Publikation: Weighted Minimal Hypersurface Reconstruction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Many problems in computer vision can be formulated as a minimization problem for an energy functional. If this functional is given as an integral of a scalar-valued weight function over an unknown hypersurface, then the sought-after minimal surface can be determined as a solution of the functional's Euler-Lagrange equation. This paper deals with a general class of weight functions that may depend on surface point coordinates as well as surface orientation. We derive the Euler-Lagrange equation in arbitrary dimensional space without the need for any surface parameterization, generalizing existing proofs. Our work opens up the possibility of solving problems involving minimal hypersurfaces in a dimension higher than three, which were previously impossible to solve in practice. We also introduce two applications of our new framework: We show how to reconstruct temporally coherent geometry from multiple video streams, and we use the same framework for the volumetric reconstruction of refractive and transparent natural phenomena, bodies of flowing water.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GOLDLÜCKE, Bastian, Ivo IHRKE, Christian LINZ, Marcus MAGNOR, 2007. Weighted Minimal Hypersurface Reconstruction. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007, 29(7), pp. 1194-1208. ISSN 0162-8828. eISSN 1939-3539. Available under: doi: 10.1109/TPAMI.2007.1146BibTex
@article{Goldlucke2007Weigh-29113, year={2007}, doi={10.1109/TPAMI.2007.1146}, title={Weighted Minimal Hypersurface Reconstruction}, number={7}, volume={29}, issn={0162-8828}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, pages={1194--1208}, author={Goldlücke, Bastian and Ihrke, Ivo and Linz, Christian and Magnor, Marcus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29113"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-14T12:42:47Z</dc:date> <dcterms:abstract xml:lang="eng">Many problems in computer vision can be formulated as a minimization problem for an energy functional. If this functional is given as an integral of a scalar-valued weight function over an unknown hypersurface, then the sought-after minimal surface can be determined as a solution of the functional's Euler-Lagrange equation. This paper deals with a general class of weight functions that may depend on surface point coordinates as well as surface orientation. We derive the Euler-Lagrange equation in arbitrary dimensional space without the need for any surface parameterization, generalizing existing proofs. Our work opens up the possibility of solving problems involving minimal hypersurfaces in a dimension higher than three, which were previously impossible to solve in practice. We also introduce two applications of our new framework: We show how to reconstruct temporally coherent geometry from multiple video streams, and we use the same framework for the volumetric reconstruction of refractive and transparent natural phenomena, bodies of flowing water.</dcterms:abstract> <dcterms:title>Weighted Minimal Hypersurface Reconstruction</dcterms:title> <dcterms:issued>2007</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29113"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Magnor, Marcus</dc:creator> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:creator>Linz, Christian</dc:creator> <dc:contributor>Ihrke, Ivo</dc:contributor> <dc:contributor>Linz, Christian</dc:contributor> <dc:contributor>Magnor, Marcus</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dc:creator>Ihrke, Ivo</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-14T12:42:47Z</dcterms:available> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>