Publikation:

Engineering Graph Clustering : Models and Experimental Evaluation

Lade...
Vorschaubild

Dateien

clustering.pdf
clustering.pdfGröße: 492.15 KBDownloads: 593

Datum

2007

Autor:innen

Gaertler, Marco
Wagner, Dorothea

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Journal of Experimental Algorithmics. 2007, 12, 1.1. Available under: doi: 10.1145/1227161.1227162

Zusammenfassung

A promising approach to graph clustering is based on the intuitive notion of intracluster density versus intercluster sparsity. As for the weighted case, clusters should accumulate lots of weight, in contrast to their connection to the remaining graph, which should be light. While both formalizations and algorithms focusing on particular aspects of this rather vague concept have been proposed, no conclusive argument on their appropriateness has been given. In order to deepen the understanding of particular concepts, including both quality assessment as well as designing new algorithms, we conducted an experimental evaluation of graph-clustering approaches. By combining proved techniques from graph partitioning and geometric clustering, we also introduce a new approach that compares favorably.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

algorithm, experimental evaluation, quality measures, clustering algorithms, design, graph clustering

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRANDES, Ulrik, Marco GAERTLER, Dorothea WAGNER, 2007. Engineering Graph Clustering : Models and Experimental Evaluation. In: ACM Journal of Experimental Algorithmics. 2007, 12, 1.1. Available under: doi: 10.1145/1227161.1227162
BibTex
@article{Brandes2007Engin-5928,
  year={2007},
  doi={10.1145/1227161.1227162},
  title={Engineering Graph Clustering : Models and Experimental Evaluation},
  volume={12},
  journal={ACM Journal of Experimental Algorithmics},
  author={Brandes, Ulrik and Gaertler, Marco and Wagner, Dorothea},
  note={Article Number: 1.1}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5928">
    <dc:creator>Gaertler, Marco</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:26Z</dc:date>
    <dc:format>application/pdf</dc:format>
    <dcterms:title>Engineering Graph Clustering : Models and Experimental Evaluation</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5928/1/clustering.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>First publ. in: ACM Journal of Experimental Algorithmics 12 (2007), Article 1.1</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5928"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dcterms:abstract xml:lang="eng">A promising approach to graph clustering is based on the intuitive notion of intracluster density versus intercluster sparsity. As for the weighted case, clusters should accumulate lots of weight, in contrast to their connection to the remaining graph, which should be light. While both formalizations and algorithms focusing on particular aspects of this rather vague concept have been proposed, no conclusive argument on their appropriateness has been given. In order to deepen the understanding of particular concepts, including both quality assessment as well as designing new algorithms, we conducted an experimental evaluation of graph-clustering approaches. By combining proved techniques from graph partitioning and geometric clustering, we also introduce a new approach that compares favorably.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Wagner, Dorothea</dc:contributor>
    <dc:creator>Wagner, Dorothea</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:26Z</dcterms:available>
    <dc:contributor>Gaertler, Marco</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5928/1/clustering.pdf"/>
    <dcterms:issued>2007</dcterms:issued>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen