Publikation:

Evaluating Link-based Recommendations for Wikipedia

Lade...
Vorschaubild

Dateien

Schwarzer_2-1unn74ajzyyz15.pdf
Schwarzer_2-1unn74ajzyyz15.pdfGröße: 181.63 KBDownloads: 797

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

JCDL '16 : Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries. New York: ACM Press, 2016, pp. 191-200. ISBN 978-1-4503-4229-2. Available under: doi: 10.1145/2910896.2910908

Zusammenfassung

Literature recommender systems support users in filtering the vast and increasing number of documents in digital libraries and on the Web. For academic literature, research has proven the ability of citation-based document similarity measures, such as Co-Citation (CoCit), or Co-Citation Proximity Analysis (CPA) to improve recommendation quality. In this paper, we report on the first large-scale investigation of the performance of the CPA approach in generating literature recommendations for Wikipedia, which is fundamentally different from the academic literature domain. We analyze links instead of citations to generate article recommendations. We evaluate CPA, CoCit, and the Apache Lucene MoreLikeThis (MLT) function, which represents a traditional text-based similarity measure. We use two datasets of 779,716 and 2.57 million Wikipedia articles, the Big Data processing framework Apache Flink, and a ten-node computing cluster. To enable our large-scale evaluation, we derive two quasi-gold standards from the links in Wikipedia's "See also" sections and a comprehensive Wikipedia clickstream dataset. Our results show that the citation-based measures CPA and CoCit have complementary strengths compared to the text-based MLT measure. While MLT performs well in identifying narrowly similar articles that share similar words and structure, the citation- based measures are better able to identify topically related information, such as information on the city of a certain university or other technical universities in the region. The CPA approach, which consistently outperformed CoCit, is better suited for identifying a broader spectrum of related articles, as well as popular articles that typically exhibit a higher quality. Additional benefits of the CPA approach are its lower runtime requirements and its language-independence that allows for a cross-language retrieval of articles. We present a manual analysis of exemplary articles to demonstrate and discuss our findings. The raw data and source code of our study, together with a manual on how to use them, are openly available at: https://github.com/wikimedia/citolytics

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Joint Conference on Digital Libraries 2016, 19. Juni 2016 - 23. Juni 2016, Newark, New Jersey, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHWARZER, Malte, Moritz SCHUBOTZ, Norman MEUSCHKE, Corinna BREITINGER, Volker MARKL, Bela GIPP, 2016. Evaluating Link-based Recommendations for Wikipedia. Joint Conference on Digital Libraries 2016. Newark, New Jersey, USA, 19. Juni 2016 - 23. Juni 2016. In: JCDL '16 : Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries. New York: ACM Press, 2016, pp. 191-200. ISBN 978-1-4503-4229-2. Available under: doi: 10.1145/2910896.2910908
BibTex
@inproceedings{Schwarzer2016Evalu-37472,
  year={2016},
  doi={10.1145/2910896.2910908},
  title={Evaluating Link-based Recommendations for Wikipedia},
  isbn={978-1-4503-4229-2},
  publisher={ACM Press},
  address={New York},
  booktitle={JCDL '16 : Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries},
  pages={191--200},
  author={Schwarzer, Malte and Schubotz, Moritz and Meuschke, Norman and Breitinger, Corinna and Markl, Volker and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37472">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37472/1/Schwarzer_2-1unn74ajzyyz15.pdf"/>
    <dcterms:title>Evaluating Link-based Recommendations for Wikipedia</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37472/1/Schwarzer_2-1unn74ajzyyz15.pdf"/>
    <dc:contributor>Schwarzer, Malte</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Literature recommender systems support users in filtering the vast and increasing number of documents in digital libraries and on the Web. For academic literature, research has proven the ability of citation-based document similarity measures, such as Co-Citation (CoCit), or Co-Citation Proximity Analysis (CPA) to improve recommendation quality. In this paper, we report on the first large-scale investigation of the performance of the CPA approach in generating literature recommendations for Wikipedia, which is fundamentally different from the academic literature domain. We analyze links instead of citations to generate article recommendations. We evaluate CPA, CoCit, and the Apache Lucene MoreLikeThis (MLT) function, which represents a traditional text-based similarity measure. We use two datasets of 779,716 and 2.57 million Wikipedia articles, the Big Data processing framework Apache Flink, and a ten-node computing cluster. To enable our large-scale evaluation, we derive two quasi-gold standards from the links in Wikipedia's "See also" sections and a comprehensive Wikipedia clickstream dataset. Our results show that the citation-based measures CPA and CoCit have complementary strengths compared to the text-based MLT measure. While MLT performs well in identifying narrowly similar articles that share similar words and structure, the citation- based measures are better able to identify topically related information, such as information on the city of a certain university or other technical universities in the region. The CPA approach, which consistently outperformed CoCit, is better suited for identifying a broader spectrum of related articles, as well as popular articles that typically exhibit a higher quality. Additional benefits of the CPA approach are its lower runtime requirements and its language-independence that allows for a cross-language retrieval of articles. We present a manual analysis of exemplary articles to demonstrate and discuss our findings. The raw data and source code of our study, together with a manual on how to use them, are openly available at: https://github.com/wikimedia/citolytics</dcterms:abstract>
    <dc:creator>Meuschke, Norman</dc:creator>
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:contributor>Breitinger, Corinna</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37472"/>
    <dc:creator>Markl, Volker</dc:creator>
    <dc:contributor>Meuschke, Norman</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T08:10:22Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T08:10:22Z</dc:date>
    <dcterms:issued>2016</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Markl, Volker</dc:contributor>
    <dc:creator>Schwarzer, Malte</dc:creator>
    <dc:creator>Breitinger, Corinna</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen