Publikation: Defaultable Bond Markets with Jumps
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We construct a model for the term structure in a market of defaultable bonds with jumps ${p^d(t,T);t\le T}$, $T\in(0,T^]$. We derive the instantaneous defaultable forward rate $f^d(t,T)$ defined by $p^d(t,T)=\bb I_{{t<\tilde\tau}}e^{-\int_t^Tf^d(t,l)dl}$ in the real world probability. We are also given default-free bonds ${p(t,T);t\le T}$, $T\in(0,T^]$ and we establish the market consisting of both the defaultable and the non-defaultable bonds. In this market we study the common equivalent martingale measure and in this arbitrage free market we derive the relationship between the forward rates $f(t,T)$ and $f^d(t,T)$ associated with the two sorts of bonds. Especially, it is proved that in a parameterized market with common equivalent martingale measure where $f(t,T)$ can be described by (\ref{eqn-forward rate-1}) the defaultable forward rate $f^d(t,T)$ can be reconstructed from the special form of the default-free forward rate $f(t,T)$ if a certain system of BSDEs has a solution.\ Finally we extend the results to a market with recovery rate and give examples where the system of BSDEs has a solution.\
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
XIONG, Dewen, Michael KOHLMANN, 2012. Defaultable Bond Markets with Jumps. In: Stochastic Analysis and Applications. 2012, 30(2), pp. 285-321. ISSN 0736-2994. Available under: doi: 10.1080/07362994.2012.649623BibTex
@article{Xiong2012Defau-18544, year={2012}, doi={10.1080/07362994.2012.649623}, title={Defaultable Bond Markets with Jumps}, number={2}, volume={30}, issn={0736-2994}, journal={Stochastic Analysis and Applications}, pages={285--321}, author={Xiong, Dewen and Kohlmann, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18544"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18544"/> <dc:creator>Xiong, Dewen</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T15:59:37Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Xiong, Dewen</dc:contributor> <dc:contributor>Kohlmann, Michael</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We construct a model for the term structure in a market of defaultable bonds with jumps $\{p^d(t,T);t\le T\}$, $T\in(0,T^*]$. We derive the instantaneous defaultable forward rate $f^d(t,T)$ defined by $p^d(t,T)=\bb I_{\{t<\tilde\tau\}}e^{-\int_t^Tf^d(t,l)dl}$ in the real world probability. We are also given default-free bonds $\{p(t,T);t\le T\}$, $T\in(0,T^*]$ and we establish the market consisting of both the defaultable and the non-defaultable bonds. In this market we study the common equivalent martingale measure and in this arbitrage free market we derive the relationship between the forward rates $f(t,T)$ and $f^d(t,T)$ associated with the two sorts of bonds. Especially, it is proved that in a parameterized market with common equivalent martingale measure where $f(t,T)$ can be described by (\ref{eqn-forward rate-1}) the defaultable forward rate $f^d(t,T)$ can be reconstructed from the special form of the default-free forward rate $f(t,T)$ if a certain system of BSDEs has a solution.\\ Finally we extend the results to a market with recovery rate and give examples where the system of BSDEs has a solution.\\</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Defaultable Bond Markets with Jumps</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2012</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kohlmann, Michael</dc:creator> <dcterms:bibliographicCitation>Stochastic Analysis and Applications ; 30 (2012), 2. - S. 285-321</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T15:59:37Z</dcterms:available> </rdf:Description> </rdf:RDF>