Publikation:

Defaultable Bond Markets with Jumps

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Xiong, Dewen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Stochastic Analysis and Applications. 2012, 30(2), pp. 285-321. ISSN 0736-2994. Available under: doi: 10.1080/07362994.2012.649623

Zusammenfassung

We construct a model for the term structure in a market of defaultable bonds with jumps ${p^d(t,T);t\le T}$, $T\in(0,T^]$. We derive the instantaneous defaultable forward rate $f^d(t,T)$ defined by $p^d(t,T)=\bb I_{{t<\tilde\tau}}e^{-\int_t^Tf^d(t,l)dl}$ in the real world probability. We are also given default-free bonds ${p(t,T);t\le T}$, $T\in(0,T^]$ and we establish the market consisting of both the defaultable and the non-defaultable bonds. In this market we study the common equivalent martingale measure and in this arbitrage free market we derive the relationship between the forward rates $f(t,T)$ and $f^d(t,T)$ associated with the two sorts of bonds. Especially, it is proved that in a parameterized market with common equivalent martingale measure where $f(t,T)$ can be described by (\ref{eqn-forward rate-1}) the defaultable forward rate $f^d(t,T)$ can be reconstructed from the special form of the default-free forward rate $f(t,T)$ if a certain system of BSDEs has a solution.\ Finally we extend the results to a market with recovery rate and give examples where the system of BSDEs has a solution.\

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690XIONG, Dewen, Michael KOHLMANN, 2012. Defaultable Bond Markets with Jumps. In: Stochastic Analysis and Applications. 2012, 30(2), pp. 285-321. ISSN 0736-2994. Available under: doi: 10.1080/07362994.2012.649623
BibTex
@article{Xiong2012Defau-18544,
  year={2012},
  doi={10.1080/07362994.2012.649623},
  title={Defaultable Bond Markets with Jumps},
  number={2},
  volume={30},
  issn={0736-2994},
  journal={Stochastic Analysis and Applications},
  pages={285--321},
  author={Xiong, Dewen and Kohlmann, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18544">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18544"/>
    <dc:creator>Xiong, Dewen</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T15:59:37Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Xiong, Dewen</dc:contributor>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We construct a model for the term structure in a market of defaultable bonds with jumps $\{p^d(t,T);t\le T\}$, $T\in(0,T^*]$. We derive the instantaneous defaultable forward rate $f^d(t,T)$ defined by $p^d(t,T)=\bb I_{\{t&lt;\tilde\tau\}}e^{-\int_t^Tf^d(t,l)dl}$ in the real world probability. We are also given default-free bonds $\{p(t,T);t\le T\}$, $T\in(0,T^*]$ and we establish the market consisting of both the defaultable and the non-defaultable bonds. In this market we study the common equivalent martingale measure and in this arbitrage free market we derive the relationship between the forward rates $f(t,T)$ and $f^d(t,T)$ associated with the two sorts of bonds. Especially, it is proved that in a parameterized market with common equivalent martingale measure where $f(t,T)$ can be described by (\ref{eqn-forward rate-1}) the defaultable forward rate $f^d(t,T)$ can be reconstructed from the special form of the default-free forward rate $f(t,T)$ if a certain system of BSDEs has a solution.\\ Finally we extend the results to a market with recovery rate and give examples where the system of BSDEs has a solution.\\</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Defaultable Bond Markets with Jumps</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2012</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Kohlmann, Michael</dc:creator>
    <dcterms:bibliographicCitation>Stochastic Analysis and Applications ; 30 (2012), 2. - S. 285-321</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T15:59:37Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen