Publikation: Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Adiabatic evolutions find widespread utility in applications to quantum state engineering, geometric quantum computation, and quantum simulation. Although offering robustness to experimental imperfections, adiabatic processes are susceptible to decoherence due to their long evolution time. A general strategy termed "shortcuts to adiabaticity" (STA) aims to remedy this vulnerability by designing fast dynamics to reproduce the results of slow, adiabatic evolutions. Here, we implement a novel STA technique known as "superadiabatic transitionless driving" (SATD) to speed up stimulated Raman adiabatic passage (STIRAP) in a solid-state lambda ({\Lambda}) system. Utilizing optical transitions to a dissipative excited state in the nitrogen-vacancy (NV) center in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the initialization and transfer of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results motivate STA as a promising tool for controlling open quantum systems comprising individual or hybrid nanomechanical, superconducting, and photonic elements in the solid state.Adiabatic processes are useful for quantum technologies but, despite their robustness to experimental imperfections, they remain susceptible to decoherence due to their long evolution time. A general strategy termed shortcuts to adiabaticity (STA) aims to remedy this vulnerability by designing fast dynamics to reproduce the results of a slow, adiabatic evolution. Here, we implement an STA technique known as superadiabatic transitionless driving10 (SATD) to speed up stimulated Raman adiabatic passage in a solid-state lambda system. Using the optical transitions to a dissipative excited state in the nitrogen-vacancy centre in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the initialization and transfer of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results suggest that STA could be effective for controlling a variety of solid-state open quantum systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHOU, Brian B., Alexandre BAKSIC, Hugo RIBEIRO, Christopher G. YALE, F. Joseph HEREMANS, Paul C. JERGER, Adrian AUER, Guido BURKARD, Aashish A. CLERK, David D. AWSCHALOM, 2017. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. In: Nature Physics. 2017, 13(4), pp. 330-334. ISSN 1745-2473. eISSN 1745-2481. Available under: doi: 10.1038/nphys3967BibTex
@article{Zhou2017Accel-36042, year={2017}, doi={10.1038/nphys3967}, title={Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system}, number={4}, volume={13}, issn={1745-2473}, journal={Nature Physics}, pages={330--334}, author={Zhou, Brian B. and Baksic, Alexandre and Ribeiro, Hugo and Yale, Christopher G. and Heremans, F. Joseph and Jerger, Paul C. and Auer, Adrian and Burkard, Guido and Clerk, Aashish A. and Awschalom, David D.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36042"> <dc:contributor>Yale, Christopher G.</dc:contributor> <dc:creator>Awschalom, David D.</dc:creator> <dc:contributor>Burkard, Guido</dc:contributor> <dc:creator>Ribeiro, Hugo</dc:creator> <dc:creator>Burkard, Guido</dc:creator> <dc:contributor>Zhou, Brian B.</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Yale, Christopher G.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-08T15:12:34Z</dc:date> <dc:contributor>Heremans, F. Joseph</dc:contributor> <dc:contributor>Baksic, Alexandre</dc:contributor> <dc:creator>Auer, Adrian</dc:creator> <dcterms:title>Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ribeiro, Hugo</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-08T15:12:34Z</dcterms:available> <dcterms:issued>2017</dcterms:issued> <dc:contributor>Awschalom, David D.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Clerk, Aashish A.</dc:creator> <dcterms:abstract xml:lang="eng">Adiabatic evolutions find widespread utility in applications to quantum state engineering, geometric quantum computation, and quantum simulation. Although offering robustness to experimental imperfections, adiabatic processes are susceptible to decoherence due to their long evolution time. A general strategy termed "shortcuts to adiabaticity" (STA) aims to remedy this vulnerability by designing fast dynamics to reproduce the results of slow, adiabatic evolutions. Here, we implement a novel STA technique known as "superadiabatic transitionless driving" (SATD) to speed up stimulated Raman adiabatic passage (STIRAP) in a solid-state lambda ({\Lambda}) system. Utilizing optical transitions to a dissipative excited state in the nitrogen-vacancy (NV) center in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the initialization and transfer of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results motivate STA as a promising tool for controlling open quantum systems comprising individual or hybrid nanomechanical, superconducting, and photonic elements in the solid state.Adiabatic processes are useful for quantum technologies but, despite their robustness to experimental imperfections, they remain susceptible to decoherence due to their long evolution time. A general strategy termed shortcuts to adiabaticity (STA) aims to remedy this vulnerability by designing fast dynamics to reproduce the results of a slow, adiabatic evolution. Here, we implement an STA technique known as superadiabatic transitionless driving10 (SATD) to speed up stimulated Raman adiabatic passage in a solid-state lambda system. Using the optical transitions to a dissipative excited state in the nitrogen-vacancy centre in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the initialization and transfer of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results suggest that STA could be effective for controlling a variety of solid-state open quantum systems.</dcterms:abstract> <dc:contributor>Jerger, Paul C.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Baksic, Alexandre</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36042"/> <dc:creator>Heremans, F. Joseph</dc:creator> <dc:contributor>Clerk, Aashish A.</dc:contributor> <dc:creator>Jerger, Paul C.</dc:creator> <dc:creator>Zhou, Brian B.</dc:creator> <dc:contributor>Auer, Adrian</dc:contributor> </rdf:Description> </rdf:RDF>