Publikation:

Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Zhou, Brian B.
Baksic, Alexandre
Yale, Christopher G.
Heremans, F. Joseph
Jerger, Paul C.
Clerk, Aashish A.
Awschalom, David D.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nature Physics. 2017, 13(4), pp. 330-334. ISSN 1745-2473. eISSN 1745-2481. Available under: doi: 10.1038/nphys3967

Zusammenfassung

Adiabatic evolutions find widespread utility in applications to quantum state engineering, geometric quantum computation, and quantum simulation. Although offering robustness to experimental imperfections, adiabatic processes are susceptible to decoherence due to their long evolution time. A general strategy termed "shortcuts to adiabaticity" (STA) aims to remedy this vulnerability by designing fast dynamics to reproduce the results of slow, adiabatic evolutions. Here, we implement a novel STA technique known as "superadiabatic transitionless driving" (SATD) to speed up stimulated Raman adiabatic passage (STIRAP) in a solid-state lambda ({\Lambda}) system. Utilizing optical transitions to a dissipative excited state in the nitrogen-vacancy (NV) center in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the initialization and transfer of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results motivate STA as a promising tool for controlling open quantum systems comprising individual or hybrid nanomechanical, superconducting, and photonic elements in the solid state.Adiabatic processes are useful for quantum technologies but, despite their robustness to experimental imperfections, they remain susceptible to decoherence due to their long evolution time. A general strategy termed shortcuts to adiabaticity (STA) aims to remedy this vulnerability by designing fast dynamics to reproduce the results of a slow, adiabatic evolution. Here, we implement an STA technique known as superadiabatic transitionless driving10 (SATD) to speed up stimulated Raman adiabatic passage in a solid-state lambda system. Using the optical transitions to a dissipative excited state in the nitrogen-vacancy centre in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the initialization and transfer of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results suggest that STA could be effective for controlling a variety of solid-state open quantum systems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Quantum information, Qubits, Semiconductors, Spintronics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZHOU, Brian B., Alexandre BAKSIC, Hugo RIBEIRO, Christopher G. YALE, F. Joseph HEREMANS, Paul C. JERGER, Adrian AUER, Guido BURKARD, Aashish A. CLERK, David D. AWSCHALOM, 2017. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. In: Nature Physics. 2017, 13(4), pp. 330-334. ISSN 1745-2473. eISSN 1745-2481. Available under: doi: 10.1038/nphys3967
BibTex
@article{Zhou2017Accel-36042,
  year={2017},
  doi={10.1038/nphys3967},
  title={Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system},
  number={4},
  volume={13},
  issn={1745-2473},
  journal={Nature Physics},
  pages={330--334},
  author={Zhou, Brian B. and Baksic, Alexandre and Ribeiro, Hugo and Yale, Christopher G. and Heremans, F. Joseph and Jerger, Paul C. and Auer, Adrian and Burkard, Guido and Clerk, Aashish A. and Awschalom, David D.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36042">
    <dc:contributor>Yale, Christopher G.</dc:contributor>
    <dc:creator>Awschalom, David D.</dc:creator>
    <dc:contributor>Burkard, Guido</dc:contributor>
    <dc:creator>Ribeiro, Hugo</dc:creator>
    <dc:creator>Burkard, Guido</dc:creator>
    <dc:contributor>Zhou, Brian B.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Yale, Christopher G.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-08T15:12:34Z</dc:date>
    <dc:contributor>Heremans, F. Joseph</dc:contributor>
    <dc:contributor>Baksic, Alexandre</dc:contributor>
    <dc:creator>Auer, Adrian</dc:creator>
    <dcterms:title>Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Ribeiro, Hugo</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-08T15:12:34Z</dcterms:available>
    <dcterms:issued>2017</dcterms:issued>
    <dc:contributor>Awschalom, David D.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Clerk, Aashish A.</dc:creator>
    <dcterms:abstract xml:lang="eng">Adiabatic evolutions find widespread utility in applications to quantum state engineering, geometric quantum computation, and quantum simulation. Although offering robustness to experimental imperfections, adiabatic processes are susceptible to decoherence due to their long evolution time. A general strategy termed "shortcuts to adiabaticity" (STA) aims to remedy this vulnerability by designing fast dynamics to reproduce the results of slow, adiabatic evolutions. Here, we implement a novel STA technique known as "superadiabatic transitionless driving" (SATD) to speed up stimulated Raman adiabatic passage (STIRAP) in a solid-state lambda ({\Lambda}) system. Utilizing optical transitions to a dissipative excited state in the nitrogen-vacancy (NV) center in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the initialization and transfer of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results motivate STA as a promising tool for controlling open quantum systems comprising individual or hybrid nanomechanical, superconducting, and photonic elements in the solid state.Adiabatic processes are useful for quantum technologies but, despite their robustness to experimental imperfections, they remain susceptible to decoherence due to their long evolution time. A general strategy termed shortcuts to adiabaticity (STA) aims to remedy this vulnerability by designing fast dynamics to reproduce the results of a slow, adiabatic evolution. Here, we implement an STA technique known as superadiabatic transitionless driving10 (SATD) to speed up stimulated Raman adiabatic passage in a solid-state lambda system. Using the optical transitions to a dissipative excited state in the nitrogen-vacancy centre in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the initialization and transfer of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results suggest that STA could be effective for controlling a variety of solid-state open quantum systems.</dcterms:abstract>
    <dc:contributor>Jerger, Paul C.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Baksic, Alexandre</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36042"/>
    <dc:creator>Heremans, F. Joseph</dc:creator>
    <dc:contributor>Clerk, Aashish A.</dc:contributor>
    <dc:creator>Jerger, Paul C.</dc:creator>
    <dc:creator>Zhou, Brian B.</dc:creator>
    <dc:contributor>Auer, Adrian</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2017-05-08 15:08:23
2016-11-23 13:21:13
* Ausgewählte Version