Publikation:

Classless

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Analysis. Oxford University Press (OUP). 2020, 80(1), pp. 76-83. ISSN 0003-2638. eISSN 1467-8284. Available under: doi: 10.1093/analys/anz025

Zusammenfassung

Classes are a kind of collection. Typically, they are too large to be sets. For example, there are classes containing absolutely all sets even though there is no set of all sets. But what are classes, if not sets? When our theory of classes is relatively weak, this question can be avoided. In particular, it is well known that von Neuman–Bernays–Godel class theory (NBG) is conservative over the standard axioms of set theory (namely, those of Zermelo–Fraenkel set theory with the axiom of Choice (ZFC)): anything NGB can prove about the sets is already provable in ZFC. In this paper I will prove a new conservativity result for a much broader range of class theories. It tells us that as long as our set theory T contains an independently well-motivated reflection principle, anything provable about the sets in any reasonable class theory extending T is already provable in T.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ROBERTS, Sam, 2020. Classless. In: Analysis. Oxford University Press (OUP). 2020, 80(1), pp. 76-83. ISSN 0003-2638. eISSN 1467-8284. Available under: doi: 10.1093/analys/anz025
BibTex
@article{Roberts2020Class-54522,
  year={2020},
  doi={10.1093/analys/anz025},
  title={Classless},
  url={https://academic.oup.com/analysis/article/80/1/76/5525268},
  number={1},
  volume={80},
  issn={0003-2638},
  journal={Analysis},
  pages={76--83},
  author={Roberts, Sam}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54522">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-09T11:31:52Z</dcterms:available>
    <dc:creator>Roberts, Sam</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:contributor>Roberts, Sam</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Classless</dcterms:title>
    <dcterms:abstract xml:lang="eng">Classes are a kind of collection. Typically, they are too large to be sets. For example, there are classes containing absolutely all sets even though there is no set of all sets. But what are classes, if not sets? When our theory of classes is relatively weak, this question can be avoided. In particular, it is well known that von Neuman–Bernays–Godel class theory (NBG) is conservative over the standard axioms of set theory (namely, those of Zermelo–Fraenkel set theory with the axiom of Choice (ZFC)): anything NGB can prove about the sets is already provable in ZFC. In this paper I will prove a new conservativity result for a much broader range of class theories. It tells us that as long as our set theory T contains an independently well-motivated reflection principle, anything provable about the sets in any reasonable class theory extending T is already provable in T.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54522"/>
    <dcterms:issued>2020</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-09T11:31:52Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2021-08-09

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen