Publikation: Classless
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Classes are a kind of collection. Typically, they are too large to be sets. For example, there are classes containing absolutely all sets even though there is no set of all sets. But what are classes, if not sets? When our theory of classes is relatively weak, this question can be avoided. In particular, it is well known that von Neuman–Bernays–Godel class theory (NBG) is conservative over the standard axioms of set theory (namely, those of Zermelo–Fraenkel set theory with the axiom of Choice (ZFC)): anything NGB can prove about the sets is already provable in ZFC. In this paper I will prove a new conservativity result for a much broader range of class theories. It tells us that as long as our set theory T contains an independently well-motivated reflection principle, anything provable about the sets in any reasonable class theory extending T is already provable in T.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ROBERTS, Sam, 2020. Classless. In: Analysis. Oxford University Press (OUP). 2020, 80(1), pp. 76-83. ISSN 0003-2638. eISSN 1467-8284. Available under: doi: 10.1093/analys/anz025BibTex
@article{Roberts2020Class-54522, year={2020}, doi={10.1093/analys/anz025}, title={Classless}, url={https://academic.oup.com/analysis/article/80/1/76/5525268}, number={1}, volume={80}, issn={0003-2638}, journal={Analysis}, pages={76--83}, author={Roberts, Sam} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54522"> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-09T11:31:52Z</dcterms:available> <dc:creator>Roberts, Sam</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:contributor>Roberts, Sam</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:title>Classless</dcterms:title> <dcterms:abstract xml:lang="eng">Classes are a kind of collection. Typically, they are too large to be sets. For example, there are classes containing absolutely all sets even though there is no set of all sets. But what are classes, if not sets? When our theory of classes is relatively weak, this question can be avoided. In particular, it is well known that von Neuman–Bernays–Godel class theory (NBG) is conservative over the standard axioms of set theory (namely, those of Zermelo–Fraenkel set theory with the axiom of Choice (ZFC)): anything NGB can prove about the sets is already provable in ZFC. In this paper I will prove a new conservativity result for a much broader range of class theories. It tells us that as long as our set theory T contains an independently well-motivated reflection principle, anything provable about the sets in any reasonable class theory extending T is already provable in T.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54522"/> <dcterms:issued>2020</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-09T11:31:52Z</dc:date> </rdf:Description> </rdf:RDF>