Publikation: The Carbonation of Wollastonite : A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
One of the most promising strategies for the safe and permanent disposal of anthropogenic CO2 is its conversion into carbonate minerals via the carbonation of calcium and magnesium silicates. However, the mechanism of such a reaction is not well constrained, and its slow kinetics is a handicap for the implementation of silicate mineral carbonation as an effective method for CO2 capture and storage (CCS). Here, we studied the different steps of wollastonite (CaSiO3) carbonation (silicate dissolution ! carbonate precipitation) as a model CCS system for the screening of natural and biomimetic catalysts for this reaction. Tested catalysts included carbonic anhydrase (CA), a natural enzyme that catalyzes the reversible hydration of CO2(aq), and biomimetic metal-organic frameworks (MOFs). Our results show that dissolution is the rate-limiting step for wollastonite carbonation. The overall reaction progresses anisotropically along different [hkl] directions via a pseudomorphic interface-coupled dissolution–precipitation mechanism, leading to partial passivation via secondary surface precipitation of amorphous silica and calcite, which in both cases is anisotropic (i.e., (hkl)-specific). CA accelerates the final carbonate precipitation step but hinders the overall carbonation of wollastonite. Remarkably, one of the tested Zr-based MOFs accelerates the dissolution of the silicate. The use of MOFs for enhanced silicate dissolution alone or in combination with other natural or biomimetic catalysts for accelerated carbonation could represent a potentially effective strategy for enhanced mineral CCS.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DI LORENZO, Fulvio, Cristina RUIZ AGUDO, Aurelia IBAÑEZ-VELASCO, Rodrigo GIL-SAN MILLÁN, Jorge NAVARRO, Encarnacion RUIZ-AGUDO, Carlos RODRIGUEZ-NAVARRO, 2018. The Carbonation of Wollastonite : A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration. In: Minerals. 2018, 8(5), 209. eISSN 2075-163X. Available under: doi: 10.3390/min8050209BibTex
@article{DiLorenzo2018-05-11Carbo-43372, year={2018}, doi={10.3390/min8050209}, title={The Carbonation of Wollastonite : A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration}, number={5}, volume={8}, journal={Minerals}, author={Di Lorenzo, Fulvio and Ruiz Agudo, Cristina and Ibañez-Velasco, Aurelia and Gil-San Millán, Rodrigo and Navarro, Jorge and Ruiz-Agudo, Encarnacion and Rodriguez-Navarro, Carlos}, note={Article Number: 209} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43372"> <dc:contributor>Di Lorenzo, Fulvio</dc:contributor> <dc:contributor>Ruiz Agudo, Cristina</dc:contributor> <dc:creator>Ruiz Agudo, Cristina</dc:creator> <dc:creator>Ibañez-Velasco, Aurelia</dc:creator> <dcterms:issued>2018-05-11</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Navarro, Jorge</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-25T08:31:39Z</dcterms:available> <dc:contributor>Navarro, Jorge</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Ibañez-Velasco, Aurelia</dc:contributor> <dcterms:abstract xml:lang="eng">One of the most promising strategies for the safe and permanent disposal of anthropogenic CO2 is its conversion into carbonate minerals via the carbonation of calcium and magnesium silicates. However, the mechanism of such a reaction is not well constrained, and its slow kinetics is a handicap for the implementation of silicate mineral carbonation as an effective method for CO2 capture and storage (CCS). Here, we studied the different steps of wollastonite (CaSiO3) carbonation (silicate dissolution ! carbonate precipitation) as a model CCS system for the screening of natural and biomimetic catalysts for this reaction. Tested catalysts included carbonic anhydrase (CA), a natural enzyme that catalyzes the reversible hydration of CO2(aq), and biomimetic metal-organic frameworks (MOFs). Our results show that dissolution is the rate-limiting step for wollastonite carbonation. The overall reaction progresses anisotropically along different [hkl] directions via a pseudomorphic interface-coupled dissolution–precipitation mechanism, leading to partial passivation via secondary surface precipitation of amorphous silica and calcite, which in both cases is anisotropic (i.e., (hkl)-specific). CA accelerates the final carbonate precipitation step but hinders the overall carbonation of wollastonite. Remarkably, one of the tested Zr-based MOFs accelerates the dissolution of the silicate. The use of MOFs for enhanced silicate dissolution alone or in combination with other natural or biomimetic catalysts for accelerated carbonation could represent a potentially effective strategy for enhanced mineral CCS.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43372/1/DiLorenzo_2-1v3p3s6idgddw5.pdf"/> <dc:contributor>Gil-San Millán, Rodrigo</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Gil-San Millán, Rodrigo</dc:creator> <dc:creator>Di Lorenzo, Fulvio</dc:creator> <dcterms:title>The Carbonation of Wollastonite : A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-25T08:31:39Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43372"/> <dc:creator>Ruiz-Agudo, Encarnacion</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43372/1/DiLorenzo_2-1v3p3s6idgddw5.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:language>eng</dc:language> <dc:contributor>Rodriguez-Navarro, Carlos</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Ruiz-Agudo, Encarnacion</dc:contributor> <dc:creator>Rodriguez-Navarro, Carlos</dc:creator> </rdf:Description> </rdf:RDF>