Publikation:

The Carbonation of Wollastonite : A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration

Lade...
Vorschaubild

Dateien

DiLorenzo_2-1v3p3s6idgddw5.pdf
DiLorenzo_2-1v3p3s6idgddw5.pdfGröße: 2.17 MBDownloads: 294

Datum

2018

Autor:innen

Di Lorenzo, Fulvio
Ibañez-Velasco, Aurelia
Gil-San Millán, Rodrigo
Navarro, Jorge
Ruiz-Agudo, Encarnacion
Rodriguez-Navarro, Carlos

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Minerals. 2018, 8(5), 209. eISSN 2075-163X. Available under: doi: 10.3390/min8050209

Zusammenfassung

One of the most promising strategies for the safe and permanent disposal of anthropogenic CO2 is its conversion into carbonate minerals via the carbonation of calcium and magnesium silicates. However, the mechanism of such a reaction is not well constrained, and its slow kinetics is a handicap for the implementation of silicate mineral carbonation as an effective method for CO2 capture and storage (CCS). Here, we studied the different steps of wollastonite (CaSiO3) carbonation (silicate dissolution ! carbonate precipitation) as a model CCS system for the screening of natural and biomimetic catalysts for this reaction. Tested catalysts included carbonic anhydrase (CA), a natural enzyme that catalyzes the reversible hydration of CO2(aq), and biomimetic metal-organic frameworks (MOFs). Our results show that dissolution is the rate-limiting step for wollastonite carbonation. The overall reaction progresses anisotropically along different [hkl] directions via a pseudomorphic interface-coupled dissolution–precipitation mechanism, leading to partial passivation via secondary surface precipitation of amorphous silica and calcite, which in both cases is anisotropic (i.e., (hkl)-specific). CA accelerates the final carbonate precipitation step but hinders the overall carbonation of wollastonite. Remarkably, one of the tested Zr-based MOFs accelerates the dissolution of the silicate. The use of MOFs for enhanced silicate dissolution alone or in combination with other natural or biomimetic catalysts for accelerated carbonation could represent a potentially effective strategy for enhanced mineral CCS.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

carbonation; wollastonite; catalysts; carbonic anhydrase;MOFs; carbon capture and storage

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DI LORENZO, Fulvio, Cristina RUIZ AGUDO, Aurelia IBAÑEZ-VELASCO, Rodrigo GIL-SAN MILLÁN, Jorge NAVARRO, Encarnacion RUIZ-AGUDO, Carlos RODRIGUEZ-NAVARRO, 2018. The Carbonation of Wollastonite : A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration. In: Minerals. 2018, 8(5), 209. eISSN 2075-163X. Available under: doi: 10.3390/min8050209
BibTex
@article{DiLorenzo2018-05-11Carbo-43372,
  year={2018},
  doi={10.3390/min8050209},
  title={The Carbonation of Wollastonite : A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration},
  number={5},
  volume={8},
  journal={Minerals},
  author={Di Lorenzo, Fulvio and Ruiz Agudo, Cristina and Ibañez-Velasco, Aurelia and Gil-San Millán, Rodrigo and Navarro, Jorge and Ruiz-Agudo, Encarnacion and Rodriguez-Navarro, Carlos},
  note={Article Number: 209}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43372">
    <dc:contributor>Di Lorenzo, Fulvio</dc:contributor>
    <dc:contributor>Ruiz Agudo, Cristina</dc:contributor>
    <dc:creator>Ruiz Agudo, Cristina</dc:creator>
    <dc:creator>Ibañez-Velasco, Aurelia</dc:creator>
    <dcterms:issued>2018-05-11</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Navarro, Jorge</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-25T08:31:39Z</dcterms:available>
    <dc:contributor>Navarro, Jorge</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Ibañez-Velasco, Aurelia</dc:contributor>
    <dcterms:abstract xml:lang="eng">One of the most promising strategies for the safe and permanent disposal of anthropogenic CO2 is its conversion into carbonate minerals via the carbonation of calcium and magnesium silicates. However, the mechanism of such a reaction is not well constrained, and its slow kinetics is a handicap for the implementation of silicate mineral carbonation as an effective method for CO2 capture and storage (CCS). Here, we studied the different steps of wollastonite (CaSiO3) carbonation (silicate dissolution ! carbonate precipitation) as a model CCS system for the screening of natural and biomimetic catalysts for this reaction. Tested catalysts included carbonic anhydrase (CA), a natural enzyme that catalyzes the reversible hydration of CO2(aq), and biomimetic metal-organic frameworks (MOFs). Our results show that dissolution is the rate-limiting step for wollastonite carbonation. The overall reaction progresses anisotropically along different [hkl] directions via a pseudomorphic interface-coupled dissolution–precipitation mechanism, leading to partial passivation via secondary surface precipitation of amorphous silica and calcite, which in both cases is anisotropic (i.e., (hkl)-specific). CA accelerates the final carbonate precipitation step but hinders the overall carbonation of wollastonite. Remarkably, one of the tested Zr-based MOFs accelerates the dissolution of the silicate. The use of MOFs for enhanced silicate dissolution alone or in combination with other natural or biomimetic catalysts for accelerated carbonation could represent a potentially effective strategy for enhanced mineral CCS.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43372/1/DiLorenzo_2-1v3p3s6idgddw5.pdf"/>
    <dc:contributor>Gil-San Millán, Rodrigo</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Gil-San Millán, Rodrigo</dc:creator>
    <dc:creator>Di Lorenzo, Fulvio</dc:creator>
    <dcterms:title>The Carbonation of Wollastonite : A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-25T08:31:39Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43372"/>
    <dc:creator>Ruiz-Agudo, Encarnacion</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43372/1/DiLorenzo_2-1v3p3s6idgddw5.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Rodriguez-Navarro, Carlos</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Ruiz-Agudo, Encarnacion</dc:contributor>
    <dc:creator>Rodriguez-Navarro, Carlos</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen