Publikation:

SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Fan, Chunling
Zhang, Yun
Jiang, Qingshan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

IEEE COMPUTER SOCIETY, /, ed.. 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). Piscataway: IEEE, 2019, pp. 167-173. ISBN 978-1-5386-8212-8. Available under: doi: 10.1109/QoMEX.2019.8743204

Zusammenfassung

The Satisfied User Ratio (SUR) curve for a lossy image compression scheme, e.g., JPEG, characterizes the probability distribution of the Just Noticeable Difference (JND) level, the smallest distortion level that can be perceived by a subject. We propose the first deep learning approach to predict such SUR curves. Instead of the direct approach of regressing the SUR curve itself for a given reference image, our model is trained on pairs of images, original and compressed. Relying on a Siamese Convolutional Neural Network (CNN), feature pooling, a fully connected regression-head, and transfer learning, we achieved a good prediction performance. Experiments on the MCL-JCI dataset showed a mean Bhattacharyya distance between the predicted and the original JND distributions of only 0.072.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Satisfied User Ratio, Just Noticeable Difference, Convolutional Neural Network, Deep Learning

Konferenz

2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), 5. Juni 2019 - 7. Juni 2019, Berlin
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FAN, Chunling, Hanhe LIN, Vlad HOSU, Yun ZHANG, Qingshan JIANG, Raouf HAMZAOUI, Dietmar SAUPE, 2019. SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning. 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). Berlin, 5. Juni 2019 - 7. Juni 2019. In: IEEE COMPUTER SOCIETY, /, ed.. 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). Piscataway: IEEE, 2019, pp. 167-173. ISBN 978-1-5386-8212-8. Available under: doi: 10.1109/QoMEX.2019.8743204
BibTex
@inproceedings{Fan2019SURNe-49118,
  year={2019},
  doi={10.1109/QoMEX.2019.8743204},
  title={SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning},
  isbn={978-1-5386-8212-8},
  publisher={IEEE},
  address={Piscataway},
  booktitle={2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX)},
  pages={167--173},
  editor={IEEE Computer Society, /},
  author={Fan, Chunling and Lin, Hanhe and Hosu, Vlad and Zhang, Yun and Jiang, Qingshan and Hamzaoui, Raouf and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49118">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">The Satisfied User Ratio (SUR) curve for a lossy image compression scheme, e.g., JPEG, characterizes the probability distribution of the Just Noticeable Difference (JND) level, the smallest distortion level that can be perceived by a subject. We propose the first deep learning approach to predict such SUR curves. Instead of the direct approach of regressing the SUR curve itself for a given reference image, our model is trained on pairs of images, original and compressed. Relying on a Siamese Convolutional Neural Network (CNN), feature pooling, a fully connected regression-head, and transfer learning, we achieved a good prediction performance. Experiments on the MCL-JCI dataset showed a mean Bhattacharyya distance between the predicted and the original JND distributions of only 0.072.</dcterms:abstract>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning</dcterms:title>
    <dc:contributor>Jiang, Qingshan</dc:contributor>
    <dc:contributor>Hamzaoui, Raouf</dc:contributor>
    <dc:contributor>Zhang, Yun</dc:contributor>
    <dc:contributor>Fan, Chunling</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-23T09:05:30Z</dcterms:available>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fan, Chunling</dc:creator>
    <dc:creator>Jiang, Qingshan</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49118"/>
    <dc:creator>Zhang, Yun</dc:creator>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:creator>Hamzaoui, Raouf</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-23T09:05:30Z</dc:date>
    <dc:creator>Lin, Hanhe</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen