Publikation: Density Equalizing Distortion of Large Geographic Point Sets
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visualizing large geo-demographical datasets using pixel-based techniques involves mapping the geospatial dimensions of a data point to screen coordinates and appropriately encoding its statistical value by color. The analysis of such data presents a great challenge. General tasks involve clustering, categorization, and searching for patterns of interest for sociological or economic research. Available visual encodings and screen space limitations lead to over-plotting and hiding of patterns and clusters in densely populated areas, while sparsely populated areas waste space and draw the attention away from the areas of interest. In this paper. two new approaches (RadialScale and AngularScale) are introduced to create density-equalized maps, while preserving recognizable features and neighborhoods in the visualization . These approaches build the core of a multi-scaling technique based on local features of the data described as local minima and maxima of point density. Scaling is conducted several times around these features, which leads to more homogeneous distortions. Results are illustrated using several real-world datasets. Our evaluation shows that the proposed techniques outperform traditional techniques as regard the homogeneity of the resulting data distributions and therefore build a more appropriate basis for analytic purposes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BAK, Peter, Matthias SCHÄFER, Andreas STOFFEL, Daniel A. KEIM, Itzhak OMER, 2009. Density Equalizing Distortion of Large Geographic Point Sets. In: Cartography and Geographic Information Science. 2009, 36(3), pp. 237-250. Available under: doi: 10.1559/152304009788988288BibTex
@article{Bak2009Densi-5819, year={2009}, doi={10.1559/152304009788988288}, title={Density Equalizing Distortion of Large Geographic Point Sets}, number={3}, volume={36}, journal={Cartography and Geographic Information Science}, pages={237--250}, author={Bak, Peter and Schäfer, Matthias and Stoffel, Andreas and Keim, Daniel A. and Omer, Itzhak} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5819"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Schäfer, Matthias</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Bak, Peter</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:22Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5819/1/Bak_2009_DensitiyEqualizing.pdf"/> <dc:contributor>Schäfer, Matthias</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Stoffel, Andreas</dc:creator> <dcterms:bibliographicCitation>First publ. in: Cartography and Geographic Information Science ; 36 (2009), 3. - pp. 237-250</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5819"/> <dc:contributor>Stoffel, Andreas</dc:contributor> <dcterms:abstract xml:lang="eng">Visualizing large geo-demographical datasets using pixel-based techniques involves mapping the geospatial dimensions of a data point to screen coordinates and appropriately encoding its statistical value by color. The analysis of such data presents a great challenge. General tasks involve clustering, categorization, and searching for patterns of interest for sociological or economic research. Available visual encodings and screen space limitations lead to over-plotting and hiding of patterns and clusters in densely populated areas, while sparsely populated areas waste space and draw the attention away from the areas of interest. In this paper. two new approaches (RadialScale and AngularScale) are introduced to create density-equalized maps, while preserving recognizable features and neighborhoods in the visualization . These approaches build the core of a multi-scaling technique based on local features of the data described as local minima and maxima of point density. Scaling is conducted several times around these features, which leads to more homogeneous distortions. Results are illustrated using several real-world datasets. Our evaluation shows that the proposed techniques outperform traditional techniques as regard the homogeneity of the resulting data distributions and therefore build a more appropriate basis for analytic purposes.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5819/1/Bak_2009_DensitiyEqualizing.pdf"/> <dc:creator>Omer, Itzhak</dc:creator> <dcterms:issued>2009</dcterms:issued> <dcterms:title>Density Equalizing Distortion of Large Geographic Point Sets</dcterms:title> <dc:creator>Bak, Peter</dc:creator> <dc:contributor>Omer, Itzhak</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:22Z</dc:date> </rdf:Description> </rdf:RDF>