Publikation: Maximal L p -regularity for a linear three-phase problem of parabolic–elliptic type
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We prove maximal L p -regularity for a three-phase problem consisting of strongly coupled parabolic–elliptic equations with inhomogeneous data. This problem is related to a nonlinear problem which arises in chemically reacting systems incorporating electromigration. Particular features are a transmission condition and a jump condition on the boundary, which couple all unknowns. By means of localization the problem is reduced to model problems in full and half-space. To solve model problems, we make use of Dore–Venni Theory, real interpolation and the Mikhlin multiplier theorem in the operator-valued version. Here it is crucial to find conditions on the data that are necessary and sufficient for maximal L p -regularity of the respective solution.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOTSCHOTE, Matthias, 2010. Maximal L p -regularity for a linear three-phase problem of parabolic–elliptic type. In: Journal of Evolution Equations. 2010, 10(2), pp. 293-318. ISSN 1424-3199. eISSN 1424-3202. Available under: doi: 10.1007/s00028-009-0050-6BibTex
@article{Kotschote2010Maxim-25501, year={2010}, doi={10.1007/s00028-009-0050-6}, title={Maximal L <sub>p</sub> -regularity for a linear three-phase problem of parabolic–elliptic type}, number={2}, volume={10}, issn={1424-3199}, journal={Journal of Evolution Equations}, pages={293--318}, author={Kotschote, Matthias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25501"> <dc:language>eng</dc:language> <dc:creator>Kotschote, Matthias</dc:creator> <dcterms:title>Maximal L <sub>p</sub> -regularity for a linear three-phase problem of parabolic–elliptic type</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25501"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:08:44Z</dcterms:available> <dcterms:abstract xml:lang="eng">We prove maximal L p -regularity for a three-phase problem consisting of strongly coupled parabolic–elliptic equations with inhomogeneous data. This problem is related to a nonlinear problem which arises in chemically reacting systems incorporating electromigration. Particular features are a transmission condition and a jump condition on the boundary, which couple all unknowns. By means of localization the problem is reduced to model problems in full and half-space. To solve model problems, we make use of Dore–Venni Theory, real interpolation and the Mikhlin multiplier theorem in the operator-valued version. Here it is crucial to find conditions on the data that are necessary and sufficient for maximal L p -regularity of the respective solution.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:08:44Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>Journal of Evolution Equations ; 10 (2010), 2. - S. 293-318</dcterms:bibliographicCitation> <dcterms:issued>2010</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Kotschote, Matthias</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>