Publikation:

Maximal L p -regularity for a linear three-phase problem of parabolic–elliptic type

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Evolution Equations. 2010, 10(2), pp. 293-318. ISSN 1424-3199. eISSN 1424-3202. Available under: doi: 10.1007/s00028-009-0050-6

Zusammenfassung

We prove maximal L p -regularity for a three-phase problem consisting of strongly coupled parabolic–elliptic equations with inhomogeneous data. This problem is related to a nonlinear problem which arises in chemically reacting systems incorporating electromigration. Particular features are a transmission condition and a jump condition on the boundary, which couple all unknowns. By means of localization the problem is reduced to model problems in full and half-space. To solve model problems, we make use of Dore–Venni Theory, real interpolation and the Mikhlin multiplier theorem in the operator-valued version. Here it is crucial to find conditions on the data that are necessary and sufficient for maximal L p -regularity of the respective solution.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOTSCHOTE, Matthias, 2010. Maximal L p -regularity for a linear three-phase problem of parabolic–elliptic type. In: Journal of Evolution Equations. 2010, 10(2), pp. 293-318. ISSN 1424-3199. eISSN 1424-3202. Available under: doi: 10.1007/s00028-009-0050-6
BibTex
@article{Kotschote2010Maxim-25501,
  year={2010},
  doi={10.1007/s00028-009-0050-6},
  title={Maximal L <sub>p</sub> -regularity for a linear three-phase problem of parabolic–elliptic type},
  number={2},
  volume={10},
  issn={1424-3199},
  journal={Journal of Evolution Equations},
  pages={293--318},
  author={Kotschote, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25501">
    <dc:language>eng</dc:language>
    <dc:creator>Kotschote, Matthias</dc:creator>
    <dcterms:title>Maximal L &lt;sub&gt;p&lt;/sub&gt; -regularity for a linear three-phase problem of parabolic–elliptic type</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25501"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:08:44Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">We prove maximal L p -regularity for a three-phase problem consisting of strongly coupled parabolic–elliptic equations with inhomogeneous data. This problem is related to a nonlinear problem which arises in chemically reacting systems incorporating electromigration. Particular features are a transmission condition and a jump condition on the boundary, which couple all unknowns. By means of localization the problem is reduced to model problems in full and half-space. To solve model problems, we make use of Dore–Venni Theory, real interpolation and the Mikhlin multiplier theorem in the operator-valued version. Here it is crucial to find conditions on the data that are necessary and sufficient for maximal L p -regularity of the respective solution.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:08:44Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:bibliographicCitation>Journal of Evolution Equations ; 10 (2010), 2. - S. 293-318</dcterms:bibliographicCitation>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Kotschote, Matthias</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen