Publikation: Single-electron transport through stabilised silicon nanocrystals
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We have fabricated organically capped stable luminescent silicon nanocrystals with narrow size distribution by a novel, high yield and easy to implement technique. We demonstrate transport measurements of individual silicon nanocrystals by scanning tunnelling microscopy at a low temperature in a double-barrier tunnel junction arrangement in which we observed pronounced single electron tunnelling effects. The tunnelling spectroscopy of these nanocrystals with different diameters reveals quantum confinement induced bandgap modifications. Furthermore, from the features in the tunnelling spectra, we differentiate several energy contributions arising from electronic interactions inside the nanocrystal. By applying a magnetic field, we have detected a variation in the differential conductance profile that we attribute to arising from higher order tunnelling processes. We have also systematically simulated our experimental data with the Orthodox theory, and the results show good agreement with the experiment. The study establishes a correlation between the nanocrystal size and quantum confinement induced band-structure modifications which will pave the way to devise tailored nanocrystals.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BASU, Tuhin Shuvra, Simon DIESCH, Elke SCHEER, 2018. Single-electron transport through stabilised silicon nanocrystals. In: Nanoscale. 2018, 10(29), pp. 13949-13958. ISSN 2040-3364. eISSN 2040-3372. Available under: doi: 10.1039/c8nr01552jBibTex
@article{Basu2018-07-26Singl-42936, year={2018}, doi={10.1039/c8nr01552j}, title={Single-electron transport through stabilised silicon nanocrystals}, number={29}, volume={10}, issn={2040-3364}, journal={Nanoscale}, pages={13949--13958}, author={Basu, Tuhin Shuvra and Diesch, Simon and Scheer, Elke} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42936"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42936/3/Basu_2-1vliq7vgq3e7j8.pdf"/> <dc:contributor>Scheer, Elke</dc:contributor> <dcterms:issued>2018-07-26</dcterms:issued> <dc:contributor>Diesch, Simon</dc:contributor> <dcterms:title>Single-electron transport through stabilised silicon nanocrystals</dcterms:title> <dc:creator>Diesch, Simon</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-31T11:57:05Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We have fabricated organically capped stable luminescent silicon nanocrystals with narrow size distribution by a novel, high yield and easy to implement technique. We demonstrate transport measurements of individual silicon nanocrystals by scanning tunnelling microscopy at a low temperature in a double-barrier tunnel junction arrangement in which we observed pronounced single electron tunnelling effects. The tunnelling spectroscopy of these nanocrystals with different diameters reveals quantum confinement induced bandgap modifications. Furthermore, from the features in the tunnelling spectra, we differentiate several energy contributions arising from electronic interactions inside the nanocrystal. By applying a magnetic field, we have detected a variation in the differential conductance profile that we attribute to arising from higher order tunnelling processes. We have also systematically simulated our experimental data with the Orthodox theory, and the results show good agreement with the experiment. The study establishes a correlation between the nanocrystal size and quantum confinement induced band-structure modifications which will pave the way to devise tailored nanocrystals.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-31T11:57:05Z</dcterms:available> <dc:contributor>Basu, Tuhin Shuvra</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:creator>Scheer, Elke</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42936"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42936/3/Basu_2-1vliq7vgq3e7j8.pdf"/> <dc:creator>Basu, Tuhin Shuvra</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>