Publikation: Finding Anomalies in Time-Series using Visual Correlation for Interactive Root Cause Analysis
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Monitoring computer networks often includes gathering vast amounts of time-series data from thousands of computer systems and network devices. Threshold alerting is easy to accomplish with state-of-the-art technologies. However, to find correlations and similar behaviors between the different devices is challenging. We developed a visual analytics application to tackle this challenge by integrating similarity models and analytics combined with well-known, but task-adapted, time-series visualizations. We show in a case study, how this system can be used to visually identify correlations and anomalies in large data sets and identify and investigate security-related events.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STOFFEL, Florian, Fabian FISCHER, Daniel A. KEIM, 2013. Finding Anomalies in Time-Series using Visual Correlation for Interactive Root Cause Analysis. the Tenth Workshop. Atlanta, Georgia, 14. Okt. 2013 - 14. Okt. 2013. In: Proceedings of the Tenth Workshop on Visualization for Cyber Security - VizSec '13. New York, New York, USA: ACM Press, 2013, pp. 65-72. ISBN 978-1-4503-2173-0. Available under: doi: 10.1145/2517957.2517966BibTex
@inproceedings{Stoffel2013Findi-26514, year={2013}, doi={10.1145/2517957.2517966}, title={Finding Anomalies in Time-Series using Visual Correlation for Interactive Root Cause Analysis}, isbn={978-1-4503-2173-0}, publisher={ACM Press}, address={New York, New York, USA}, booktitle={Proceedings of the Tenth Workshop on Visualization for Cyber Security - VizSec '13}, pages={65--72}, author={Stoffel, Florian and Fischer, Fabian and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26514"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:41:07Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26514/2/Stoffel_265149.pdf"/> <dc:creator>Fischer, Fabian</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Stoffel, Florian</dc:contributor> <dcterms:title>Finding Anomalies in Time-Series using Visual Correlation for Interactive Root Cause Analysis</dcterms:title> <dcterms:bibliographicCitation>VizSec '13 : Visualization for Cyber Security ; Atlanta, GA, USA - October 14, 2013 / John Goodall ... (eds.). - New York : AMC, 2013. - S. 65-72. - ISBN 978-1-4503-2173-0</dcterms:bibliographicCitation> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26514/2/Stoffel_265149.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Stoffel, Florian</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:41:07Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26514"/> <dcterms:issued>2013</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Monitoring computer networks often includes gathering vast amounts of time-series data from thousands of computer systems and network devices. Threshold alerting is easy to accomplish with state-of-the-art technologies. However, to find correlations and similar behaviors between the different devices is challenging. We developed a visual analytics application to tackle this challenge by integrating similarity models and analytics combined with well-known, but task-adapted, time-series visualizations. We show in a case study, how this system can be used to visually identify correlations and anomalies in large data sets and identify and investigate security-related events.</dcterms:abstract> <dc:contributor>Fischer, Fabian</dc:contributor> </rdf:Description> </rdf:RDF>