Publikation:

LPLM : A Neural Language Model for Cardinality Estimation of LIKE-Queries

Lade...
Vorschaubild

Dateien

Aytimur_2-1vneqrtgjl07c9.pdf
Aytimur_2-1vneqrtgjl07c9.pdfGröße: 1.77 MBDownloads: 50

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): CH 2464/1-1
Deutsche Forschungsgemeinschaft (DFG): GR 4497/5

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Proceedings of the ACM on Management of Data. Association for Computing Machinery (ACM). 2024, 2(1), 54. eISSN 2836-6573. Verfügbar unter: doi: 10.1145/3639309

Zusammenfassung

Cardinality estimation is an important step in cost-based database query optimization. The accuracy of the estimates directly affects the ability of an optimizer to identify the most efficient query execution plan correctly. In this paper, we study cardinality estimation of LIKE-queries, i.e., queries that use the LIKE-operator to match a pattern with wildcards against string-valued attributes. While both traditional and machine-learning-based approaches have been proposed to tackle this problem, we argue that they all suffer from drawbacks. Most importantly, many state-of-the-art approaches are not designed for patterns that contain wildcards in-between characters. Based on past research on neural language models, we introduce the LIKE-Pattern Language Model (LPLM) that uses a new language and a novel probability distribution function to capture the semantics of general LIKE-patterns. We also propose a method to generate training data for our model. We demonstrate that our method outperforms state-of-the-art approaches in terms of precision (Q-error), while offering comparable runtime performance and memory requirements.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AYTIMUR, Mehmet, Silvan REINER, Leonard WÖRTELER, Theodoros CHONDROGIANNIS, Michael GROSSNIKLAUS, 2024. LPLM : A Neural Language Model for Cardinality Estimation of LIKE-Queries. In: Proceedings of the ACM on Management of Data. Association for Computing Machinery (ACM). 2024, 2(1), 54. eISSN 2836-6573. Verfügbar unter: doi: 10.1145/3639309
BibTex
@article{Aytimur2024Neura-69726,
  year={2024},
  doi={10.1145/3639309},
  title={LPLM : A Neural Language Model for Cardinality Estimation of LIKE-Queries},
  number={1},
  volume={2},
  journal={Proceedings of the ACM on Management of Data},
  author={Aytimur, Mehmet and Reiner, Silvan and Wörteler, Leonard and Chondrogiannis, Theodoros and Grossniklaus, Michael},
  note={Article Number: 54}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69726">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Wörteler, Leonard</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-02T08:49:13Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Reiner, Silvan</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69726/1/Aytimur_2-1vneqrtgjl07c9.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69726"/>
    <dcterms:issued>2024</dcterms:issued>
    <dcterms:abstract>Cardinality estimation is an important step in cost-based database query optimization. The accuracy of the estimates directly affects the ability of an optimizer to identify the most efficient query execution plan correctly. In this paper, we study cardinality estimation of LIKE-queries, i.e., queries that use the LIKE-operator to match a pattern with wildcards against string-valued attributes. While both traditional and machine-learning-based approaches have been proposed to tackle this problem, we argue that they all suffer from drawbacks. Most importantly, many state-of-the-art approaches are not designed for patterns that contain wildcards in-between characters. Based on past research on neural language models, we introduce the LIKE-Pattern Language Model (LPLM) that uses a new language and a novel probability distribution function to capture the semantics of general LIKE-patterns. We also propose a method to generate training data for our model. We demonstrate that our method outperforms state-of-the-art approaches in terms of precision (Q-error), while offering comparable runtime performance and memory requirements.</dcterms:abstract>
    <dc:contributor>Chondrogiannis, Theodoros</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Aytimur, Mehmet</dc:creator>
    <dc:creator>Chondrogiannis, Theodoros</dc:creator>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dc:creator>Wörteler, Leonard</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-02T08:49:13Z</dc:date>
    <dc:contributor>Aytimur, Mehmet</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Reiner, Silvan</dc:contributor>
    <dcterms:title>LPLM : A Neural Language Model for Cardinality Estimation of LIKE-Queries</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69726/1/Aytimur_2-1vneqrtgjl07c9.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen