Quantum state tomography as a numerical optimization problem
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a framework that formulates the quest for the most efficient quantum state tomography scheme as an optimization problem which can be solved numerically. This approach can be applied to a broad spectrum of relevant setups including measurements restricted to a subsystem. To illustrate the power of this method we present results for the six-dimensional Hilbert space constituted by a qubit-qutrit system, which could be realized e.g. by the N-14 nuclear spin-1 and two electronic spin states of a nitrogen-vacancy center in diamond. Measurements of the qubit subsystem are expressed by projectors of rank three, i.e., projectors on half-dimensional subspaces. For systems consisting only of qubits, it was shown analytically that a set of projectors on half-dimensional subspaces can be arranged in an informationally optimal fashion for quantum state tomography, thus forming so-called mutually unbiased subspaces. Our method goes beyond qubits-only systems and we find that in dimension six such a set of mutually-unbiased subspaces can be approximated with a deviation irrelevant for practical applications.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
IVANOVA-ROHLING, Violeta, Guido BURKARD, Niklas ROHLING, 2021. Quantum state tomography as a numerical optimization problem. In: New Journal of Physics. Institute of Physics Publishing (IOP). 2021, 23, 123034. eISSN 1367-2630. Available under: doi: 10.1088/1367-2630/ac3c0eBibTex
@article{IvanovaRohling2021Quant-52409.2, year={2021}, doi={10.1088/1367-2630/ac3c0e}, title={Quantum state tomography as a numerical optimization problem}, volume={23}, journal={New Journal of Physics}, author={Ivanova-Rohling, Violeta and Burkard, Guido and Rohling, Niklas}, note={Article Number: 123034} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52409.2"> <dc:creator>Burkard, Guido</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:title>Quantum state tomography as a numerical optimization problem</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Ivanova-Rohling, Violeta</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">We present a framework that formulates the quest for the most efficient quantum state tomography scheme as an optimization problem which can be solved numerically. This approach can be applied to a broad spectrum of relevant setups including measurements restricted to a subsystem. To illustrate the power of this method we present results for the six-dimensional Hilbert space constituted by a qubit-qutrit system, which could be realized e.g. by the N-14 nuclear spin-1 and two electronic spin states of a nitrogen-vacancy center in diamond. Measurements of the qubit subsystem are expressed by projectors of rank three, i.e., projectors on half-dimensional subspaces. For systems consisting only of qubits, it was shown analytically that a set of projectors on half-dimensional subspaces can be arranged in an informationally optimal fashion for quantum state tomography, thus forming so-called mutually unbiased subspaces. Our method goes beyond qubits-only systems and we find that in dimension six such a set of mutually-unbiased subspaces can be approximated with a deviation irrelevant for practical applications.</dcterms:abstract> <dcterms:issued>2021</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-20T11:47:18Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52409.2/1/Ivanova-Rohling_2-1vrrkulty6wx88.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-20T11:47:18Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rohling, Niklas</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:language>eng</dc:language> <dc:creator>Ivanova-Rohling, Violeta</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52409.2/1/Ivanova-Rohling_2-1vrrkulty6wx88.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52409.2"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Rohling, Niklas</dc:creator> <dc:contributor>Burkard, Guido</dc:contributor> </rdf:Description> </rdf:RDF>