Publikation:

Is regulatory science ready for artificial intelligence?

Lade...
Vorschaubild

Dateien

Hartung_2-1vux21taqtbp30.PDF
Hartung_2-1vux21taqtbp30.PDFGröße: 821.58 KBDownloads: 1

Datum

2025

Autor:innen

Whelan, Maurice
Tong, Weida
Califf, Robert M.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

npj Digital Medicine. Springer. 2025, 8(1), 200. eISSN 2398-6352. Verfügbar unter: doi: 10.1038/s41746-025-01596-0

Zusammenfassung

Trust is key in AI for regulatory science, but its definition is debated. If AI models use different features yet perform similarly, which should be trusted? If scientific theories must be testable, how critical is explainability? At the Global Summit on Regulatory Science (GSRS24), regulators agreed that successful AI adoption requires ongoing dialogue, adaptability, and AI-trained personnel to harness its potential for regulatory responsibilities in the evolving 21st-century landscape.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HARTUNG, Thomas, Maurice WHELAN, Weida TONG, Robert M. CALIFF, 2025. Is regulatory science ready for artificial intelligence?. In: npj Digital Medicine. Springer. 2025, 8(1), 200. eISSN 2398-6352. Verfügbar unter: doi: 10.1038/s41746-025-01596-0
BibTex
@article{Hartung2025-04-10regul-73119,
  title={Is regulatory science ready for artificial intelligence?},
  year={2025},
  doi={10.1038/s41746-025-01596-0},
  number={1},
  volume={8},
  journal={npj Digital Medicine},
  author={Hartung, Thomas and Whelan, Maurice and Tong, Weida and Califf, Robert M.},
  note={Article Number: 200}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73119">
    <dc:language>eng</dc:language>
    <dcterms:abstract>Trust is key in AI for regulatory science, but its definition is debated. If AI models use different features yet perform similarly, which should be trusted? If scientific theories must be testable, how critical is explainability? At the Global Summit on Regulatory Science (GSRS24), regulators agreed that successful AI adoption requires ongoing dialogue, adaptability, and AI-trained personnel to harness its potential for regulatory responsibilities in the evolving 21st-century landscape.</dcterms:abstract>
    <dc:contributor>Tong, Weida</dc:contributor>
    <dc:contributor>Califf, Robert M.</dc:contributor>
    <dc:contributor>Whelan, Maurice</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73119/1/Hartung_2-1vux21taqtbp30.PDF"/>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Whelan, Maurice</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73119/1/Hartung_2-1vux21taqtbp30.PDF"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73119"/>
    <dc:creator>Tong, Weida</dc:creator>
    <dcterms:issued>2025-04-10</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-29T05:02:02Z</dc:date>
    <dc:creator>Califf, Robert M.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Is regulatory science ready for artificial intelligence?</dcterms:title>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-29T05:02:02Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen