Publikation: Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz-Gilbert equation of spin dynamics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Starting from the Dirac-Kohn-Sham equation, we derive the relativistic equation of motion of spin angular momentum in a magnetic solid under an external electromagnetic field. This equation of motion can be rewritten in the form of the well-known Landau-Lifshitz-Gilbert equation for a harmonic external magnetic field and leads to a more general magnetization dynamics equation for a general time-dependent magnetic field. In both cases there is an electronic spin-relaxation term which stems from the spin-orbit interaction. We thus rigorously derive, from fundamental principles, a general expression for the anisotropic damping tensor which is shown to contain an isotropic Gilbert contribution as well as an anisotropic Ising-like and a chiral, Dzyaloshinskii-Moriya-like contribution. The expression for the spin relaxation tensor comprises furthermore both electronic interband and intraband transitions. We also show that when the externally applied electromagnetic field possesses spin angular momentum, this will lead to an optical spin torque exerted on the spin moment.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MONDAL, Ritwik, Marco BERRITTA, Peter M. OPPENEER, 2016. Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz-Gilbert equation of spin dynamics. In: Physical Review B. 2016, 94(14), 144419. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.94.144419BibTex
@article{Mondal2016Relat-46166, year={2016}, doi={10.1103/PhysRevB.94.144419}, title={Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz-Gilbert equation of spin dynamics}, number={14}, volume={94}, issn={2469-9950}, journal={Physical Review B}, author={Mondal, Ritwik and Berritta, Marco and Oppeneer, Peter M.}, note={Article Number: 144419} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46166"> <dc:contributor>Mondal, Ritwik</dc:contributor> <dcterms:issued>2016</dcterms:issued> <dc:contributor>Oppeneer, Peter M.</dc:contributor> <dc:creator>Oppeneer, Peter M.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz-Gilbert equation of spin dynamics</dcterms:title> <dc:contributor>Berritta, Marco</dc:contributor> <dc:creator>Mondal, Ritwik</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-27T13:49:08Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">Starting from the Dirac-Kohn-Sham equation, we derive the relativistic equation of motion of spin angular momentum in a magnetic solid under an external electromagnetic field. This equation of motion can be rewritten in the form of the well-known Landau-Lifshitz-Gilbert equation for a harmonic external magnetic field and leads to a more general magnetization dynamics equation for a general time-dependent magnetic field. In both cases there is an electronic spin-relaxation term which stems from the spin-orbit interaction. We thus rigorously derive, from fundamental principles, a general expression for the anisotropic damping tensor which is shown to contain an isotropic Gilbert contribution as well as an anisotropic Ising-like and a chiral, Dzyaloshinskii-Moriya-like contribution. The expression for the spin relaxation tensor comprises furthermore both electronic interband and intraband transitions. We also show that when the externally applied electromagnetic field possesses spin angular momentum, this will lead to an optical spin torque exerted on the spin moment.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46166"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-27T13:49:08Z</dc:date> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Berritta, Marco</dc:creator> </rdf:Description> </rdf:RDF>