Publikation:

Industrially viable diffused IBC solar cells using APCVD dopant glass layers

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Autor:innen

Kuruganti, Vaibhav V.
Zeman, Miro
Isabella, Olindo
Mihailetchi, Valentin D.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Solar Energy Materials and Solar Cells. Elsevier. 2023, 251, 112111. ISSN 0927-0248. eISSN 1879-3398. Available under: doi: 10.1016/j.solmat.2022.112111

Zusammenfassung

Even though interdigitated back contact (IBC) architecture produces the most efficient solar cells, it is difficult to make them cost-effective and industrially viable. Therefore, single-sided atmospheric pressure chemical vapor deposition (APCVD) is investigated for the fabrication of IBC solar cells because it reduces the overall thermal budget, simplifies wet bench processing, and requires no additional masking layer. For the fabrication of a full APCVD IBC solar cell, a very lightly doped front surface field (FSF) of 650 Ω/sq, a heavier doped back surface field (BSF) of 100 Ω/sq and a moderately doped emitter of 250 Ω/sq was used. The high-temperature annealing step is partially done in an oxygen (O2) environment to (i) drive in dopants, (ii) prevent the formation of a boron-rich layer in case of p+ doped c-Si, and (iii) grow an in-situ SiO2 at the Si/dopant glass interface. The etch rate difference between the in-situ grown SiO2 and the doped glass layer is utilized to etch the doped glass completely. The retained in-situ SiO2 after etching is capped with plasma-enhanced chemical vapor deposited (PECVD) SiNx for the passivation of both polarities of IBC solar cells. A full APCVD IBC solar cell precursors (i.e. before metallization) obtained implied open-circuit voltage (iVoc) of 714 mV and emitter saturation current density (J0s) of 17 fA/cm2. At the device level, a full APCVD IBC solar cell achieved a conversion efficiency of 22.8% with Voc of 696 mV and short-circuit current density JSC of 41.3 mA/cm2. These parameters are comparable to the commercially available full-tube diffused ZEBRA® IBC solar cells.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KURUGANTI, Vaibhav V., Daniel WURMBRAND, Thomas BUCK, Sven SEREN, Miro ZEMAN, Olindo ISABELLA, Heiko PLAGWITZ, Fabian GEML, Barbara TERHEIDEN, Valentin D. MIHAILETCHI, 2023. Industrially viable diffused IBC solar cells using APCVD dopant glass layers. In: Solar Energy Materials and Solar Cells. Elsevier. 2023, 251, 112111. ISSN 0927-0248. eISSN 1879-3398. Available under: doi: 10.1016/j.solmat.2022.112111
BibTex
@article{Kuruganti2023Indus-66115,
  year={2023},
  doi={10.1016/j.solmat.2022.112111},
  title={Industrially viable diffused IBC solar cells using APCVD dopant glass layers},
  volume={251},
  issn={0927-0248},
  journal={Solar Energy Materials and Solar Cells},
  author={Kuruganti, Vaibhav V. and Wurmbrand, Daniel and Buck, Thomas and Seren, Sven and Zeman, Miro and Isabella, Olindo and Plagwitz, Heiko and Geml, Fabian and Terheiden, Barbara and Mihailetchi, Valentin D.},
  note={Article Number: 112111}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66115">
    <dc:language>eng</dc:language>
    <dc:creator>Zeman, Miro</dc:creator>
    <dc:contributor>Terheiden, Barbara</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Geml, Fabian</dc:contributor>
    <dc:creator>Terheiden, Barbara</dc:creator>
    <dc:contributor>Wurmbrand, Daniel</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Seren, Sven</dc:creator>
    <dc:creator>Wurmbrand, Daniel</dc:creator>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Isabella, Olindo</dc:creator>
    <dc:contributor>Mihailetchi, Valentin D.</dc:contributor>
    <dc:creator>Geml, Fabian</dc:creator>
    <dc:creator>Buck, Thomas</dc:creator>
    <dcterms:title>Industrially viable diffused IBC solar cells using APCVD dopant glass layers</dcterms:title>
    <dc:contributor>Buck, Thomas</dc:contributor>
    <dc:creator>Kuruganti, Vaibhav V.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Mihailetchi, Valentin D.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Plagwitz, Heiko</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-17T11:50:36Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Seren, Sven</dc:contributor>
    <dc:contributor>Kuruganti, Vaibhav V.</dc:contributor>
    <dc:contributor>Plagwitz, Heiko</dc:contributor>
    <dc:contributor>Zeman, Miro</dc:contributor>
    <dcterms:abstract xml:lang="eng">Even though interdigitated back contact (IBC) architecture produces the most efficient solar cells, it is difficult to make them cost-effective and industrially viable. Therefore, single-sided atmospheric pressure chemical vapor deposition (APCVD) is investigated for the fabrication of IBC solar cells because it reduces the overall thermal budget, simplifies wet bench processing, and requires no additional masking layer. For the fabrication of a full APCVD IBC solar cell, a very lightly doped front surface field (FSF) of 650 Ω/sq, a heavier doped back surface field (BSF) of 100 Ω/sq and a moderately doped emitter of 250 Ω/sq was used. The high-temperature annealing step is partially done in an oxygen (O&lt;sub&gt;2&lt;/sub&gt;) environment to (i) drive in dopants, (ii) prevent the formation of a boron-rich layer in case of p&lt;sup&gt;+&lt;/sup&gt; doped c-Si, and (iii) grow an in-situ SiO&lt;sub&gt;2&lt;/sub&gt; at the Si/dopant glass interface. The etch rate difference between the in-situ grown SiO&lt;sub&gt;2&lt;/sub&gt; and the doped glass layer is utilized to etch the doped glass completely. The retained in-situ SiO&lt;sub&gt;2&lt;/sub&gt; after etching is capped with plasma-enhanced chemical vapor deposited (PECVD) SiN&lt;sub&gt;x&lt;/sub&gt; for the passivation of both polarities of IBC solar cells. A full APCVD IBC solar cell precursors (i.e. before metallization) obtained implied open-circuit voltage (iV&lt;sub&gt;oc&lt;/sub&gt;) of 714 mV and emitter saturation current density (J&lt;sub&gt;0s&lt;/sub&gt;) of 17 fA/cm&lt;sup&gt;2&lt;/sup&gt;. At the device level, a full APCVD IBC solar cell achieved a conversion efficiency of 22.8% with V&lt;sub&gt;oc&lt;/sub&gt; of 696 mV and short-circuit current density J&lt;sub&gt;SC&lt;/sub&gt; of 41.3 mA/cm&lt;sup&gt;2&lt;/sup&gt;. These parameters are comparable to the commercially available full-tube diffused ZEBRA® IBC solar cells.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66115"/>
    <dc:contributor>Isabella, Olindo</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-17T11:50:36Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen