Publikation: Reconsidering Closure, Underdetermination, and Infallibilism
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Anthony Brueckner (1994, 2005) argues for a strong connection between the closure and the underdetermination argument for scepticism. Moreover, he claims that both arguments rest on infallibilism: In order to motivate the premises of the arguments, the sceptic has to refer to an infallibility principle. If this were true, fallibilists would be right in not taking the problems posed by these sceptical arguments seriously. As many epistemologists are sympathetic to fallibilism, this would be a very interesting result. However, in this paper I will argue that Brueckner's claims are wrong: The closure and the underdetermination argument are not as closely related as he assumes and neither rests on infallibilism. Thus even a fallibilist should take these arguments to raise serious problems that must be dealt with somehow.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BRIESEN, Jochen, 2010. Reconsidering Closure, Underdetermination, and Infallibilism. In: Grazer Philosophische Studien. 2010, 80, pp. 221-234. ISSN 0165-9227. eISSN 1875-6735BibTex
@article{Briesen2010Recon-30237, year={2010}, title={Reconsidering Closure, Underdetermination, and Infallibilism}, volume={80}, issn={0165-9227}, journal={Grazer Philosophische Studien}, pages={221--234}, author={Briesen, Jochen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30237"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-12T12:24:26Z</dcterms:available> <dcterms:abstract xml:lang="eng">Anthony Brueckner (1994, 2005) argues for a strong connection between the closure and the underdetermination argument for scepticism. Moreover, he claims that both arguments rest on infallibilism: In order to motivate the premises of the arguments, the sceptic has to refer to an infallibility principle. If this were true, fallibilists would be right in not taking the problems posed by these sceptical arguments seriously. As many epistemologists are sympathetic to fallibilism, this would be a very interesting result. However, in this paper I will argue that Brueckner's claims are wrong: The closure and the underdetermination argument are not as closely related as he assumes and neither rests on infallibilism. Thus even a fallibilist should take these arguments to raise serious problems that must be dealt with somehow.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:title>Reconsidering Closure, Underdetermination, and Infallibilism</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30237"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:creator>Briesen, Jochen</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Briesen, Jochen</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-12T12:24:26Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> </rdf:Description> </rdf:RDF>