Publikation: A locally modified finite element method for a Stokes interface problem
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this work, we analyze a stationary Stokes interface problem. For discretization we apply locally modified second-order finite elements for the velocities combined with piecewise constant elements for pressure. The locally modified second-order finite element method is based on a fixed structured coarse mesh, which is then internally resolved and adjusted to the interface by means of a reference element mapping. This corresponds to a sub-triangulation of the coarse mesh into (possibly) anisotropic triangles. We show the stability of the P2 − P0 elements by using the macroelement technique, which requires local stability and a relatively weak global stability. In one particular case, we need to add a local stabilization term, or alternatively to move a critical vertex of the mesh by a small ϵ. Furthermore, we prove optimal error estimates in the energy norm and the L2-norm of the velocity and show detailed numerical results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FREI, Stefan, Gozel JUDAKOVA, Thomas RICHTER, 2025. A locally modified finite element method for a Stokes interface problem. In: Advances in Computational Science and Engineering. American Institute of Mathematical Sciences (AIMS). 2025, 3, S. 46-73. eISSN 2837-1739. Verfügbar unter: doi: 10.3934/acse.2025004BibTex
@article{Frei2025local-73042, title={A locally modified finite element method for a Stokes interface problem}, year={2025}, doi={10.3934/acse.2025004}, volume={3}, journal={Advances in Computational Science and Engineering}, pages={46--73}, author={Frei, Stefan and Judakova, Gozel and Richter, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73042"> <dc:contributor>Judakova, Gozel</dc:contributor> <dc:contributor>Frei, Stefan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:issued>2025</dcterms:issued> <dcterms:abstract>In this work, we analyze a stationary Stokes interface problem. For discretization we apply locally modified second-order finite elements for the velocities combined with piecewise constant elements for pressure. The locally modified second-order finite element method is based on a fixed structured coarse mesh, which is then internally resolved and adjusted to the interface by means of a reference element mapping. This corresponds to a sub-triangulation of the coarse mesh into (possibly) anisotropic triangles. We show the stability of the P<sub>2</sub> − P<sub>0</sub> elements by using the macroelement technique, which requires local stability and a relatively weak global stability. In one particular case, we need to add a local stabilization term, or alternatively to move a critical vertex of the mesh by a small ϵ. Furthermore, we prove optimal error estimates in the energy norm and the L<sup>2</sup>-norm of the velocity and show detailed numerical results.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Frei, Stefan</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-15T09:35:21Z</dc:date> <dc:contributor>Richter, Thomas</dc:contributor> <dc:creator>Richter, Thomas</dc:creator> <dcterms:title>A locally modified finite element method for a Stokes interface problem</dcterms:title> <dc:creator>Judakova, Gozel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73042"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-15T09:35:21Z</dcterms:available> </rdf:Description> </rdf:RDF>