Publikation: A locally modified finite element method for a Stokes interface problem
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this work, we analyze a stationary Stokes interface problem. For discretization we apply locally modified second-order finite elements for the velocities combined with piecewise constant elements for pressure. The locally modified second-order finite element method is based on a fixed structured coarse mesh, which is then internally resolved and adjusted to the interface by means of a reference element mapping. This corresponds to a sub-triangulation of the coarse mesh into (possibly) anisotropic triangles. We show the stability of the P2 − P0 elements by using the macroelement technique, which requires local stability and a relatively weak global stability. In one particular case, we need to add a local stabilization term, or alternatively to move a critical vertex of the mesh by a small ϵ. Furthermore, we prove optimal error estimates in the energy norm and the L2-norm of the velocity and show detailed numerical results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FREI, Stefan, Gozel JUDAKOVA, Thomas RICHTER, 2025. A locally modified finite element method for a Stokes interface problem. In: Advances in Computational Science and Engineering. American Institute of Mathematical Sciences (AIMS). 2025, 3, S. 46-73. eISSN 2837-1739. Verfügbar unter: doi: 10.3934/acse.2025004BibTex
@article{Frei2025local-73042,
title={A locally modified finite element method for a Stokes interface problem},
year={2025},
doi={10.3934/acse.2025004},
volume={3},
journal={Advances in Computational Science and Engineering},
pages={46--73},
author={Frei, Stefan and Judakova, Gozel and Richter, Thomas}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73042">
<dc:contributor>Judakova, Gozel</dc:contributor>
<dc:contributor>Frei, Stefan</dc:contributor>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:language>eng</dc:language>
<dcterms:issued>2025</dcterms:issued>
<dcterms:abstract>In this work, we analyze a stationary Stokes interface problem. For discretization we apply locally modified second-order finite elements for the velocities combined with piecewise constant elements for pressure. The locally modified second-order finite element method is based on a fixed structured coarse mesh, which is then internally resolved and adjusted to the interface by means of a reference element mapping. This corresponds to a sub-triangulation of the coarse mesh into (possibly) anisotropic triangles. We show the stability of the P<sub>2</sub> − P<sub>0</sub> elements by using the macroelement technique, which requires local stability and a relatively weak global stability. In one particular case, we need to add a local stabilization term, or alternatively to move a critical vertex of the mesh by a small ϵ. Furthermore, we prove optimal error estimates in the energy norm and the L<sup>2</sup>-norm of the velocity and show detailed numerical results.</dcterms:abstract>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:creator>Frei, Stefan</dc:creator>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-15T09:35:21Z</dc:date>
<dc:contributor>Richter, Thomas</dc:contributor>
<dc:creator>Richter, Thomas</dc:creator>
<dcterms:title>A locally modified finite element method for a Stokes interface problem</dcterms:title>
<dc:creator>Judakova, Gozel</dc:creator>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73042"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-15T09:35:21Z</dcterms:available>
</rdf:Description>
</rdf:RDF>