Publikation:

A locally modified finite element method for a Stokes interface problem

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Judakova, Gozel
Richter, Thomas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 548064929

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Computational Science and Engineering. American Institute of Mathematical Sciences (AIMS). 2025, 3, S. 46-73. eISSN 2837-1739. Verfügbar unter: doi: 10.3934/acse.2025004

Zusammenfassung

In this work, we analyze a stationary Stokes interface problem. For discretization we apply locally modified second-order finite elements for the velocities combined with piecewise constant elements for pressure. The locally modified second-order finite element method is based on a fixed structured coarse mesh, which is then internally resolved and adjusted to the interface by means of a reference element mapping. This corresponds to a sub-triangulation of the coarse mesh into (possibly) anisotropic triangles. We show the stability of the P2 − P0 elements by using the macroelement technique, which requires local stability and a relatively weak global stability. In one particular case, we need to add a local stabilization term, or alternatively to move a critical vertex of the mesh by a small ϵ. Furthermore, we prove optimal error estimates in the energy norm and the L2-norm of the velocity and show detailed numerical results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Stokes interface problem, inf-sup condition, macroelement technique, a priori error estimation, parametric finite elements

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FREI, Stefan, Gozel JUDAKOVA, Thomas RICHTER, 2025. A locally modified finite element method for a Stokes interface problem. In: Advances in Computational Science and Engineering. American Institute of Mathematical Sciences (AIMS). 2025, 3, S. 46-73. eISSN 2837-1739. Verfügbar unter: doi: 10.3934/acse.2025004
BibTex
@article{Frei2025local-73042,
  title={A locally modified finite element method for a Stokes interface problem},
  year={2025},
  doi={10.3934/acse.2025004},
  volume={3},
  journal={Advances in Computational Science and Engineering},
  pages={46--73},
  author={Frei, Stefan and Judakova, Gozel and Richter, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73042">
    <dc:contributor>Judakova, Gozel</dc:contributor>
    <dc:contributor>Frei, Stefan</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2025</dcterms:issued>
    <dcterms:abstract>In this work, we analyze a stationary Stokes interface problem. For discretization we apply locally modified second-order finite elements for the velocities combined with piecewise constant elements for pressure. The locally modified second-order finite element method is based on a fixed structured coarse mesh, which is then internally resolved and adjusted to the interface by means of a reference element mapping. This corresponds to a sub-triangulation of the coarse mesh into (possibly) anisotropic triangles. We show the stability of the P&lt;sub&gt;2&lt;/sub&gt; − P&lt;sub&gt;0&lt;/sub&gt; elements by using the macroelement technique, which requires local stability and a relatively weak global stability. In one particular case, we need to add a local stabilization term, or alternatively to move a critical vertex of the mesh by a small ϵ. Furthermore, we prove optimal error estimates in the energy norm and the L&lt;sup&gt;2&lt;/sup&gt;-norm of the velocity and show detailed numerical results.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Frei, Stefan</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-15T09:35:21Z</dc:date>
    <dc:contributor>Richter, Thomas</dc:contributor>
    <dc:creator>Richter, Thomas</dc:creator>
    <dcterms:title>A locally modified finite element method for a Stokes interface problem</dcterms:title>
    <dc:creator>Judakova, Gozel</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73042"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-15T09:35:21Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen