Publikation:

A Survey on Visual Analytics of Social Media Data

Lade...
Vorschaubild

Dateien

Wu_2-1wuv7d0vqmtgc7.pdf
Wu_2-1wuv7d0vqmtgc7.pdfGröße: 410.82 KBDownloads: 608

Datum

2016

Autor:innen

Wu, Yingcai
Cao, Nan
Gotz, David
Tan, Yap-Peng

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Multimedia. 2016, 18(11), pp. 2135-2148. ISSN 1520-9210. eISSN 1941-0077. Available under: doi: 10.1109/TMM.2016.2614220

Zusammenfassung

The unprecedented availability of social media data offers substantial opportunities for data owners, system operators, solution providers, and end users to explore and understand social dynamics. However, the exponential growth in the volume, velocity, and variability of social media data prevents people from fully utilizing such data. Visual analytics, which is an emerging research direction, has received considerable attention in recent years. Many visual analytics methods have been proposed across disciplines to understand large-scale structured and unstructured social media data. This objective, however, also poses significant challenges for researchers to obtain a comprehensive picture of the area, understand research challenges, and develop new techniques. In this paper, we present a comprehensive survey to characterize this fast-growing area and summarize the state-of-the-art techniques for analyzing social media data. In particular, we classify existing techniques into two categories: gathering information and understanding user behaviors. We aim to provide a clear overview of the research area through the established taxonomy. We then explore the design space and identify the research trends. Finally, we discuss challenges and open questions for future studies.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WU, Yingcai, Nan CAO, David GOTZ, Yap-Peng TAN, Daniel A. KEIM, 2016. A Survey on Visual Analytics of Social Media Data. In: IEEE Transactions on Multimedia. 2016, 18(11), pp. 2135-2148. ISSN 1520-9210. eISSN 1941-0077. Available under: doi: 10.1109/TMM.2016.2614220
BibTex
@article{Wu2016Surve-37784,
  year={2016},
  doi={10.1109/TMM.2016.2614220},
  title={A Survey on Visual Analytics of Social Media Data},
  number={11},
  volume={18},
  issn={1520-9210},
  journal={IEEE Transactions on Multimedia},
  pages={2135--2148},
  author={Wu, Yingcai and Cao, Nan and Gotz, David and Tan, Yap-Peng and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37784">
    <dcterms:issued>2016</dcterms:issued>
    <dc:contributor>Tan, Yap-Peng</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-28T16:32:06Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Gotz, David</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-28T16:32:06Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Wu, Yingcai</dc:creator>
    <dcterms:title>A Survey on Visual Analytics of Social Media Data</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37784/1/Wu_2-1wuv7d0vqmtgc7.pdf"/>
    <dc:creator>Gotz, David</dc:creator>
    <dc:creator>Cao, Nan</dc:creator>
    <dc:contributor>Wu, Yingcai</dc:contributor>
    <dcterms:abstract xml:lang="eng">The unprecedented availability of social media data offers substantial opportunities for data owners, system operators, solution providers, and end users to explore and understand social dynamics. However, the exponential growth in the volume, velocity, and variability of social media data prevents people from fully utilizing such data. Visual analytics, which is an emerging research direction, has received considerable attention in recent years. Many visual analytics methods have been proposed across disciplines to understand large-scale structured and unstructured social media data. This objective, however, also poses significant challenges for researchers to obtain a comprehensive picture of the area, understand research challenges, and develop new techniques. In this paper, we present a comprehensive survey to characterize this fast-growing area and summarize the state-of-the-art techniques for analyzing social media data. In particular, we classify existing techniques into two categories: gathering information and understanding user behaviors. We aim to provide a clear overview of the research area through the established taxonomy. We then explore the design space and identify the research trends. Finally, we discuss challenges and open questions for future studies.</dcterms:abstract>
    <dc:contributor>Cao, Nan</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37784/1/Wu_2-1wuv7d0vqmtgc7.pdf"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37784"/>
    <dc:creator>Tan, Yap-Peng</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen