Publikation: A Survey on Visual Analytics of Social Media Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The unprecedented availability of social media data offers substantial opportunities for data owners, system operators, solution providers, and end users to explore and understand social dynamics. However, the exponential growth in the volume, velocity, and variability of social media data prevents people from fully utilizing such data. Visual analytics, which is an emerging research direction, has received considerable attention in recent years. Many visual analytics methods have been proposed across disciplines to understand large-scale structured and unstructured social media data. This objective, however, also poses significant challenges for researchers to obtain a comprehensive picture of the area, understand research challenges, and develop new techniques. In this paper, we present a comprehensive survey to characterize this fast-growing area and summarize the state-of-the-art techniques for analyzing social media data. In particular, we classify existing techniques into two categories: gathering information and understanding user behaviors. We aim to provide a clear overview of the research area through the established taxonomy. We then explore the design space and identify the research trends. Finally, we discuss challenges and open questions for future studies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WU, Yingcai, Nan CAO, David GOTZ, Yap-Peng TAN, Daniel A. KEIM, 2016. A Survey on Visual Analytics of Social Media Data. In: IEEE Transactions on Multimedia. 2016, 18(11), pp. 2135-2148. ISSN 1520-9210. eISSN 1941-0077. Available under: doi: 10.1109/TMM.2016.2614220BibTex
@article{Wu2016Surve-37784, year={2016}, doi={10.1109/TMM.2016.2614220}, title={A Survey on Visual Analytics of Social Media Data}, number={11}, volume={18}, issn={1520-9210}, journal={IEEE Transactions on Multimedia}, pages={2135--2148}, author={Wu, Yingcai and Cao, Nan and Gotz, David and Tan, Yap-Peng and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37784"> <dcterms:issued>2016</dcterms:issued> <dc:contributor>Tan, Yap-Peng</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-28T16:32:06Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Gotz, David</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-28T16:32:06Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Wu, Yingcai</dc:creator> <dcterms:title>A Survey on Visual Analytics of Social Media Data</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37784/1/Wu_2-1wuv7d0vqmtgc7.pdf"/> <dc:creator>Gotz, David</dc:creator> <dc:creator>Cao, Nan</dc:creator> <dc:contributor>Wu, Yingcai</dc:contributor> <dcterms:abstract xml:lang="eng">The unprecedented availability of social media data offers substantial opportunities for data owners, system operators, solution providers, and end users to explore and understand social dynamics. However, the exponential growth in the volume, velocity, and variability of social media data prevents people from fully utilizing such data. Visual analytics, which is an emerging research direction, has received considerable attention in recent years. Many visual analytics methods have been proposed across disciplines to understand large-scale structured and unstructured social media data. This objective, however, also poses significant challenges for researchers to obtain a comprehensive picture of the area, understand research challenges, and develop new techniques. In this paper, we present a comprehensive survey to characterize this fast-growing area and summarize the state-of-the-art techniques for analyzing social media data. In particular, we classify existing techniques into two categories: gathering information and understanding user behaviors. We aim to provide a clear overview of the research area through the established taxonomy. We then explore the design space and identify the research trends. Finally, we discuss challenges and open questions for future studies.</dcterms:abstract> <dc:contributor>Cao, Nan</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37784/1/Wu_2-1wuv7d0vqmtgc7.pdf"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37784"/> <dc:creator>Tan, Yap-Peng</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>