Interactive Framework for Insect Tracking with Active Learning

Lade...
Vorschaubild
Dateien
Shen_0-283364.pdf
Shen_0-283364.pdfGröße: 1.24 MBDownloads: 284
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
IEEE, , ed.. 22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden. IEEE, 2014, pp. 2733-2738. ISBN 978-1-4799-5209-0. Available under: doi: 10.1109/ICPR.2014.471
Zusammenfassung

Extracting motion trajectories of insects is an important prerequisite in many behavioral studies. Despite great efforts to design efficient automatic tracking algorithms, tracking errors are unavoidable. In this paper, we propose general principles that help to minimize the human effort required for accurate multi-target tracking in the form of applications that can track the antennae and mouthparts of a honey bee based on a set of low frame rate videos. This interactive framework estimates which key frames will require user correction, i.e. those that are used for user correction, which are used for 1) incrementally learning an object classifier and 2) data association based tracking. To this framework we apply a standard classification algorithm (i.e. naive Bayesian classification) and an association optimization algorithm (i.e. Hungarian algorithm). The precision of tracking results by our framework on real-world video data is above 98%.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
International Conference on Pattern Recognition, 24. Aug. 2014 - 28. Aug. 2014, Stockholm
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SHEN, Minmin, Wei HUANG, Paul SZYSZKA, C. Giovanni GALIZIA, Dorit MERHOF, 2014. Interactive Framework for Insect Tracking with Active Learning. International Conference on Pattern Recognition. Stockholm, 24. Aug. 2014 - 28. Aug. 2014. In: IEEE, , ed.. 22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden. IEEE, 2014, pp. 2733-2738. ISBN 978-1-4799-5209-0. Available under: doi: 10.1109/ICPR.2014.471
BibTex
@inproceedings{Shen2014Inter-30288,
  year={2014},
  doi={10.1109/ICPR.2014.471},
  title={Interactive Framework for Insect Tracking with Active Learning},
  isbn={978-1-4799-5209-0},
  publisher={IEEE},
  booktitle={22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden},
  pages={2733--2738},
  editor={IEEE},
  author={Shen, Minmin and Huang, Wei and Szyszka, Paul and Galizia, C. Giovanni and Merhof, Dorit}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30288">
    <dcterms:abstract xml:lang="eng">Extracting motion trajectories of insects is an important prerequisite in many behavioral studies. Despite great efforts to design efficient automatic tracking algorithms, tracking errors are unavoidable. In this paper, we propose general principles that help to minimize the human effort required for accurate multi-target tracking in the form of applications that can track the antennae and mouthparts of a honey bee based on a set of low frame rate videos. This interactive framework estimates which key frames will require user correction, i.e. those that are used for user correction, which are used for 1) incrementally learning an object classifier and 2) data association based tracking. To this framework we apply a standard classification algorithm (i.e. naive Bayesian classification) and an association optimization algorithm (i.e. Hungarian algorithm). The precision of tracking results by our framework on real-world video data is above 98%.</dcterms:abstract>
    <dc:creator>Shen, Minmin</dc:creator>
    <dc:creator>Huang, Wei</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30288"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30288/1/Shen_0-283364.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:18:32Z</dc:date>
    <dc:contributor>Huang, Wei</dc:contributor>
    <dcterms:title>Interactive Framework for Insect Tracking with Active Learning</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Galizia, C. Giovanni</dc:creator>
    <dc:creator>Szyszka, Paul</dc:creator>
    <dc:contributor>Szyszka, Paul</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30288/1/Shen_0-283364.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Galizia, C. Giovanni</dc:contributor>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:18:32Z</dcterms:available>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Merhof, Dorit</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet