Publikation: Interactive Framework for Insect Tracking with Active Learning
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Extracting motion trajectories of insects is an important prerequisite in many behavioral studies. Despite great efforts to design efficient automatic tracking algorithms, tracking errors are unavoidable. In this paper, we propose general principles that help to minimize the human effort required for accurate multi-target tracking in the form of applications that can track the antennae and mouthparts of a honey bee based on a set of low frame rate videos. This interactive framework estimates which key frames will require user correction, i.e. those that are used for user correction, which are used for 1) incrementally learning an object classifier and 2) data association based tracking. To this framework we apply a standard classification algorithm (i.e. naive Bayesian classification) and an association optimization algorithm (i.e. Hungarian algorithm). The precision of tracking results by our framework on real-world video data is above 98%.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SHEN, Minmin, Wei HUANG, Paul SZYSZKA, C. Giovanni GALIZIA, Dorit MERHOF, 2014. Interactive Framework for Insect Tracking with Active Learning. International Conference on Pattern Recognition. Stockholm, 24. Aug. 2014 - 28. Aug. 2014. In: IEEE, , ed.. 22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden. IEEE, 2014, pp. 2733-2738. ISBN 978-1-4799-5209-0. Available under: doi: 10.1109/ICPR.2014.471BibTex
@inproceedings{Shen2014Inter-30288, year={2014}, doi={10.1109/ICPR.2014.471}, title={Interactive Framework for Insect Tracking with Active Learning}, isbn={978-1-4799-5209-0}, publisher={IEEE}, booktitle={22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden}, pages={2733--2738}, editor={IEEE}, author={Shen, Minmin and Huang, Wei and Szyszka, Paul and Galizia, C. Giovanni and Merhof, Dorit} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30288"> <dcterms:abstract xml:lang="eng">Extracting motion trajectories of insects is an important prerequisite in many behavioral studies. Despite great efforts to design efficient automatic tracking algorithms, tracking errors are unavoidable. In this paper, we propose general principles that help to minimize the human effort required for accurate multi-target tracking in the form of applications that can track the antennae and mouthparts of a honey bee based on a set of low frame rate videos. This interactive framework estimates which key frames will require user correction, i.e. those that are used for user correction, which are used for 1) incrementally learning an object classifier and 2) data association based tracking. To this framework we apply a standard classification algorithm (i.e. naive Bayesian classification) and an association optimization algorithm (i.e. Hungarian algorithm). The precision of tracking results by our framework on real-world video data is above 98%.</dcterms:abstract> <dc:creator>Shen, Minmin</dc:creator> <dc:creator>Huang, Wei</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Merhof, Dorit</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30288"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30288/1/Shen_0-283364.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:18:32Z</dc:date> <dc:contributor>Huang, Wei</dc:contributor> <dcterms:title>Interactive Framework for Insect Tracking with Active Learning</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Galizia, C. Giovanni</dc:creator> <dc:creator>Szyszka, Paul</dc:creator> <dc:contributor>Szyszka, Paul</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30288/1/Shen_0-283364.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Galizia, C. Giovanni</dc:contributor> <dc:contributor>Shen, Minmin</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:18:32Z</dcterms:available> <dcterms:issued>2014</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Merhof, Dorit</dc:creator> </rdf:Description> </rdf:RDF>