Publikation:

Interactive Framework for Insect Tracking with Active Learning

Lade...
Vorschaubild

Dateien

Shen_0-283364.pdf
Shen_0-283364.pdfGröße: 1.24 MBDownloads: 319

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

IEEE, , ed.. 22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden. IEEE, 2014, pp. 2733-2738. ISBN 978-1-4799-5209-0. Available under: doi: 10.1109/ICPR.2014.471

Zusammenfassung

Extracting motion trajectories of insects is an important prerequisite in many behavioral studies. Despite great efforts to design efficient automatic tracking algorithms, tracking errors are unavoidable. In this paper, we propose general principles that help to minimize the human effort required for accurate multi-target tracking in the form of applications that can track the antennae and mouthparts of a honey bee based on a set of low frame rate videos. This interactive framework estimates which key frames will require user correction, i.e. those that are used for user correction, which are used for 1) incrementally learning an object classifier and 2) data association based tracking. To this framework we apply a standard classification algorithm (i.e. naive Bayesian classification) and an association optimization algorithm (i.e. Hungarian algorithm). The precision of tracking results by our framework on real-world video data is above 98%.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

International Conference on Pattern Recognition, 24. Aug. 2014 - 28. Aug. 2014, Stockholm
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SHEN, Minmin, Wei HUANG, Paul SZYSZKA, C. Giovanni GALIZIA, Dorit MERHOF, 2014. Interactive Framework for Insect Tracking with Active Learning. International Conference on Pattern Recognition. Stockholm, 24. Aug. 2014 - 28. Aug. 2014. In: IEEE, , ed.. 22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden. IEEE, 2014, pp. 2733-2738. ISBN 978-1-4799-5209-0. Available under: doi: 10.1109/ICPR.2014.471
BibTex
@inproceedings{Shen2014Inter-30288,
  year={2014},
  doi={10.1109/ICPR.2014.471},
  title={Interactive Framework for Insect Tracking with Active Learning},
  isbn={978-1-4799-5209-0},
  publisher={IEEE},
  booktitle={22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden},
  pages={2733--2738},
  editor={IEEE},
  author={Shen, Minmin and Huang, Wei and Szyszka, Paul and Galizia, C. Giovanni and Merhof, Dorit}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30288">
    <dcterms:abstract xml:lang="eng">Extracting motion trajectories of insects is an important prerequisite in many behavioral studies. Despite great efforts to design efficient automatic tracking algorithms, tracking errors are unavoidable. In this paper, we propose general principles that help to minimize the human effort required for accurate multi-target tracking in the form of applications that can track the antennae and mouthparts of a honey bee based on a set of low frame rate videos. This interactive framework estimates which key frames will require user correction, i.e. those that are used for user correction, which are used for 1) incrementally learning an object classifier and 2) data association based tracking. To this framework we apply a standard classification algorithm (i.e. naive Bayesian classification) and an association optimization algorithm (i.e. Hungarian algorithm). The precision of tracking results by our framework on real-world video data is above 98%.</dcterms:abstract>
    <dc:creator>Shen, Minmin</dc:creator>
    <dc:creator>Huang, Wei</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30288"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30288/1/Shen_0-283364.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:18:32Z</dc:date>
    <dc:contributor>Huang, Wei</dc:contributor>
    <dcterms:title>Interactive Framework for Insect Tracking with Active Learning</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Galizia, C. Giovanni</dc:creator>
    <dc:creator>Szyszka, Paul</dc:creator>
    <dc:contributor>Szyszka, Paul</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30288/1/Shen_0-283364.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Galizia, C. Giovanni</dc:contributor>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:18:32Z</dcterms:available>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Merhof, Dorit</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen