Publikation: Triangulating non-archimedean probability
Lade...
Dateien
Datum
2018
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
The Review of Symbolic Logic. Cambridge University Press. 2018, 11(3), pp. 519-546. ISSN 1755-0203. eISSN 1755-0211. Available under: doi: 10.1017/S1755020318000060
Zusammenfassung
We relate Popper functions to regular and perfectly additive such non-Archimedean probability functions by means of a representation theorem: every such non-Archimedean probability function is infinitesimally close to some Popper function, and vice versa. We also show that regular and perfectly additive non-Archimedean probability functions can be given a lexicographic representation. Thus Popper functions, a specific kind of non-Archimedean probability functions, and lexicographic probability functions triangulate to the same place: they are in a good sense interchangeable.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
100 Philosophie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BRICKHILL, Hazel, Leon HORSTEN, 2018. Triangulating non-archimedean probability. In: The Review of Symbolic Logic. Cambridge University Press. 2018, 11(3), pp. 519-546. ISSN 1755-0203. eISSN 1755-0211. Available under: doi: 10.1017/S1755020318000060BibTex
@article{Brickhill2018-09Trian-48651, year={2018}, doi={10.1017/S1755020318000060}, title={Triangulating non-archimedean probability}, number={3}, volume={11}, issn={1755-0203}, journal={The Review of Symbolic Logic}, pages={519--546}, author={Brickhill, Hazel and Horsten, Leon} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48651"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-14T13:45:25Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48651"/> <dc:creator>Brickhill, Hazel</dc:creator> <dcterms:title>Triangulating non-archimedean probability</dcterms:title> <dcterms:abstract xml:lang="eng">We relate Popper functions to regular and perfectly additive such non-Archimedean probability functions by means of a representation theorem: every such non-Archimedean probability function is infinitesimally close to some Popper function, and vice versa. We also show that regular and perfectly additive non-Archimedean probability functions can be given a lexicographic representation. Thus Popper functions, a specific kind of non-Archimedean probability functions, and lexicographic probability functions triangulate to the same place: they are in a good sense interchangeable.</dcterms:abstract> <dc:contributor>Brickhill, Hazel</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Horsten, Leon</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48651/1/Brickhill_2-1x0b6t9w1xem44.pdf"/> <dc:creator>Horsten, Leon</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48651/1/Brickhill_2-1x0b6t9w1xem44.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-14T13:45:25Z</dcterms:available> <dcterms:issued>2018-09</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt