Publikation:

Towards interpretable quantum machine learning via single-photon quantum walks

Lade...
Vorschaubild

Dateien

Flamini_2-1x5gvqjkf5bek3.pdf
Flamini_2-1x5gvqjkf5bek3.pdfGröße: 1.07 MBDownloads: 19

Datum

2024

Autor:innen

Flamini, Fulvio
Krumm, Marius
Fiderer, Lukas J.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 101055129
Austrian Science Fund (FWF): 10.55776/F71

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Quantum Science and Technology. IOP Publishing. 2024, 9(4), 045011. eISSN 2058-9565. Verfügbar unter: doi: 10.1088/2058-9565/ad5907

Zusammenfassung

Variational quantum algorithms represent a promising approach to quantum machine learning where classical neural networks are replaced by parametrized quantum circuits. However, both approaches suffer from a clear limitation, that is a lack of interpretability. Here, we present a variational method to quantize projective simulation (PS), a reinforcement learning model aimed at interpretable artificial intelligence. Decision making in PS is modeled as a random walk on a graph describing the agent's memory. To implement the quantized model, we consider quantum walks of single photons in a lattice of tunable Mach–Zehnder interferometers trained via variational algorithms. Using an example from transfer learning, we show that the quantized PS model can exploit quantum interference to acquire capabilities beyond those of its classical counterpart. Finally, we discuss the role of quantum interference for training and tracing the decision making process, paving the way for realizations of interpretable quantum learning agents.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FLAMINI, Fulvio, Marius KRUMM, Lukas J. FIDERER, Thomas MÜLLER, Hans J. BRIEGEL, 2024. Towards interpretable quantum machine learning via single-photon quantum walks. In: Quantum Science and Technology. IOP Publishing. 2024, 9(4), 045011. eISSN 2058-9565. Verfügbar unter: doi: 10.1088/2058-9565/ad5907
BibTex
@article{Flamini2024Towar-70527,
  year={2024},
  doi={10.1088/2058-9565/ad5907},
  title={Towards interpretable quantum machine learning via single-photon quantum walks},
  number={4},
  volume={9},
  journal={Quantum Science and Technology},
  author={Flamini, Fulvio and Krumm, Marius and Fiderer, Lukas J. and Müller, Thomas and Briegel, Hans J.},
  note={Article Number: 045011}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70527">
    <dc:contributor>Briegel, Hans J.</dc:contributor>
    <dc:creator>Müller, Thomas</dc:creator>
    <dc:contributor>Müller, Thomas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70527/1/Flamini_2-1x5gvqjkf5bek3.pdf"/>
    <dcterms:title>Towards interpretable quantum machine learning via single-photon quantum walks</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Krumm, Marius</dc:contributor>
    <dc:creator>Fiderer, Lukas J.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:contributor>Flamini, Fulvio</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Flamini, Fulvio</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-02T08:27:28Z</dc:date>
    <dcterms:issued>2024</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-02T08:27:28Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70527/1/Flamini_2-1x5gvqjkf5bek3.pdf"/>
    <dc:creator>Krumm, Marius</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Briegel, Hans J.</dc:creator>
    <dcterms:abstract>Variational quantum algorithms represent a promising approach to quantum machine learning where classical neural networks are replaced by parametrized quantum circuits. However, both approaches suffer from a clear limitation, that is a lack of interpretability. Here, we present a variational method to quantize projective simulation (PS), a reinforcement learning model aimed at interpretable artificial intelligence. Decision making in PS is modeled as a random walk on a graph describing the agent's memory. To implement the quantized model, we consider quantum walks of single photons in a lattice of tunable Mach–Zehnder interferometers trained via variational algorithms. Using an example from transfer learning, we show that the quantized PS model can exploit quantum interference to acquire capabilities beyond those of its classical counterpart. Finally, we discuss the role of quantum interference for training and tracing the decision making process, paving the way for realizations of interpretable quantum learning agents.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70527"/>
    <dc:contributor>Fiderer, Lukas J.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen