Publikation:

Visualization Techniques for Mining Large Databases : a Comparison

Lade...
Vorschaubild

Dateien

keim96visualization.pdf
keim96visualization.pdfGröße: 17.06 MBDownloads: 2673

Datum

1996

Autor:innen

Kriegel, Hans-Peter

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE transactions on knowledge and data engineering. 1996, 8(6), pp. 923-938. Available under: doi: 10.1109/69.553159

Zusammenfassung

Visual data mining techniques have proven to be of high value in exploratory data analysis and they also have a high potential for mining large databases. In this article, we describe and evaluate a new visualization-based approach to mining large databases. The basic idea of our visual data mining techniques is to represent as many data items as possible on the screen at the same time by mapping each data value to a pixel of the screen and arranging the pixels adequately. The major goal of this article is to evaluate our visual data mining techniques and to compare them to other well-known visualization techniques for multidimensional data: the parallel coordinate and stick figure visualization techniques. For the evaluation of visual data mining techniques, in the first place the perception of properties of the data counts, and only in the second place the CPU time and the number of secondary storage accesses are important. In addition to testing the visualization techniques using real data, we developed a testing environment for database visualizations similar to the benchmark approach used for comparing the performance of database systems. The testing environment allows the generation of test data sets with predefined data characteristics which are important for comparing the perceptual abilities of visual data mining techniques.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Data Mining, Explorative Data Analysis, Visualizing Large Databases, Visualizing Multidimensional and Multivariate Data

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Hans-Peter KRIEGEL, 1996. Visualization Techniques for Mining Large Databases : a Comparison. In: IEEE transactions on knowledge and data engineering. 1996, 8(6), pp. 923-938. Available under: doi: 10.1109/69.553159
BibTex
@article{Keim1996Visua-5669,
  year={1996},
  doi={10.1109/69.553159},
  title={Visualization Techniques for Mining Large Databases : a Comparison},
  number={6},
  volume={8},
  journal={IEEE transactions on knowledge and data engineering},
  pages={923--938},
  author={Keim, Daniel A. and Kriegel, Hans-Peter}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5669">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5669/1/keim96visualization.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5669/1/keim96visualization.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:abstract xml:lang="eng">Visual data mining techniques have proven to be of high value in exploratory data analysis and they also have a high potential for mining large databases. In this article, we describe and evaluate a new visualization-based approach to mining large databases. The basic idea of our visual data mining techniques is to represent as many data items as possible on the screen at the same time by mapping each data value to a pixel of the screen and arranging the pixels adequately. The major goal of this article is to evaluate our visual data mining techniques and to compare them to other well-known visualization techniques for multidimensional data: the parallel coordinate and stick figure visualization techniques. For the evaluation of visual data mining techniques, in the first place the perception of properties of the data counts, and only in the second place the CPU time and the number of secondary storage accesses are important. In addition to testing the visualization techniques using real data, we developed a testing environment for database visualizations similar to the benchmark approach used for comparing the performance of database systems. The testing environment allows the generation of test data sets with predefined data characteristics which are important for comparing the perceptual abilities of visual data mining techniques.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5669"/>
    <dcterms:bibliographicCitation>First publ. in: IEEE transactions on knowledge and data engineering 8 (1996), 6, pp. 923-938</dcterms:bibliographicCitation>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:issued>1996</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:13Z</dcterms:available>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:13Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:title>Visualization Techniques for Mining Large Databases : a Comparison</dcterms:title>
    <dc:contributor>Kriegel, Hans-Peter</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Kriegel, Hans-Peter</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen