Publikation: Visualization Techniques for Mining Large Databases : a Comparison
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual data mining techniques have proven to be of high value in exploratory data analysis and they also have a high potential for mining large databases. In this article, we describe and evaluate a new visualization-based approach to mining large databases. The basic idea of our visual data mining techniques is to represent as many data items as possible on the screen at the same time by mapping each data value to a pixel of the screen and arranging the pixels adequately. The major goal of this article is to evaluate our visual data mining techniques and to compare them to other well-known visualization techniques for multidimensional data: the parallel coordinate and stick figure visualization techniques. For the evaluation of visual data mining techniques, in the first place the perception of properties of the data counts, and only in the second place the CPU time and the number of secondary storage accesses are important. In addition to testing the visualization techniques using real data, we developed a testing environment for database visualizations similar to the benchmark approach used for comparing the performance of database systems. The testing environment allows the generation of test data sets with predefined data characteristics which are important for comparing the perceptual abilities of visual data mining techniques.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Hans-Peter KRIEGEL, 1996. Visualization Techniques for Mining Large Databases : a Comparison. In: IEEE transactions on knowledge and data engineering. 1996, 8(6), pp. 923-938. Available under: doi: 10.1109/69.553159BibTex
@article{Keim1996Visua-5669, year={1996}, doi={10.1109/69.553159}, title={Visualization Techniques for Mining Large Databases : a Comparison}, number={6}, volume={8}, journal={IEEE transactions on knowledge and data engineering}, pages={923--938}, author={Keim, Daniel A. and Kriegel, Hans-Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5669"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5669/1/keim96visualization.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5669/1/keim96visualization.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:abstract xml:lang="eng">Visual data mining techniques have proven to be of high value in exploratory data analysis and they also have a high potential for mining large databases. In this article, we describe and evaluate a new visualization-based approach to mining large databases. The basic idea of our visual data mining techniques is to represent as many data items as possible on the screen at the same time by mapping each data value to a pixel of the screen and arranging the pixels adequately. The major goal of this article is to evaluate our visual data mining techniques and to compare them to other well-known visualization techniques for multidimensional data: the parallel coordinate and stick figure visualization techniques. For the evaluation of visual data mining techniques, in the first place the perception of properties of the data counts, and only in the second place the CPU time and the number of secondary storage accesses are important. In addition to testing the visualization techniques using real data, we developed a testing environment for database visualizations similar to the benchmark approach used for comparing the performance of database systems. The testing environment allows the generation of test data sets with predefined data characteristics which are important for comparing the perceptual abilities of visual data mining techniques.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5669"/> <dcterms:bibliographicCitation>First publ. in: IEEE transactions on knowledge and data engineering 8 (1996), 6, pp. 923-938</dcterms:bibliographicCitation> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:issued>1996</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:13Z</dcterms:available> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:13Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:format>application/pdf</dc:format> <dcterms:title>Visualization Techniques for Mining Large Databases : a Comparison</dcterms:title> <dc:contributor>Kriegel, Hans-Peter</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kriegel, Hans-Peter</dc:creator> </rdf:Description> </rdf:RDF>