Elliptic problems with rough boundary data in generalized Sobolev spaces
Elliptic problems with rough boundary data in generalized Sobolev spaces
No Thumbnail Available
Files
There are no files associated with this item.
Date
2021
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Communications on Pure & Applied Analysis ; 20 (2021), 2. - pp. 697-735. - American Institute of Mathematical Sciences (AIMS). - ISSN 1534-0392. - eISSN 1553-5258
Abstract
We investigate regular elliptic boundary-value problems in boun\-ded domains and show the Fredholm property for the related operators in an extended scale formed by inner product Sobolev spaces (of arbitrary real orders) and corresponding interpolation Hilbert spaces. In particular, we can deal with boundary data with arbitrary low regularity. In addition, we show interpolation properties for the extended scale, embedding results, and global and local a priori estimates for solutions to the problems under investigation. The results are applied to elliptic problems with homogeneous right-hand side and to elliptic problems with rough boundary data in Nikolskii spaces, which allows us to treat some cases of white noise on the boundary.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
ANOP, Anna, Robert DENK, Aleksandr MURACH, 2021. Elliptic problems with rough boundary data in generalized Sobolev spaces. In: Communications on Pure & Applied Analysis. American Institute of Mathematical Sciences (AIMS). 20(2), pp. 697-735. ISSN 1534-0392. eISSN 1553-5258. Available under: doi: 10.3934/cpaa.2020286BibTex
@article{Anop2021Ellip-53404, year={2021}, doi={10.3934/cpaa.2020286}, title={Elliptic problems with rough boundary data in generalized Sobolev spaces}, number={2}, volume={20}, issn={1534-0392}, journal={Communications on Pure & Applied Analysis}, pages={697--735}, author={Anop, Anna and Denk, Robert and Murach, Aleksandr} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53404"> <dc:creator>Anop, Anna</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-20T08:17:55Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53404"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Elliptic problems with rough boundary data in generalized Sobolev spaces</dcterms:title> <dc:creator>Murach, Aleksandr</dc:creator> <dc:creator>Denk, Robert</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-20T08:17:55Z</dcterms:available> <dc:contributor>Murach, Aleksandr</dc:contributor> <dc:contributor>Denk, Robert</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2021</dcterms:issued> <dc:contributor>Anop, Anna</dc:contributor> <dcterms:abstract xml:lang="eng">We investigate regular elliptic boundary-value problems in boun\-ded domains and show the Fredholm property for the related operators in an extended scale formed by inner product Sobolev spaces (of arbitrary real orders) and corresponding interpolation Hilbert spaces. In particular, we can deal with boundary data with arbitrary low regularity. In addition, we show interpolation properties for the extended scale, embedding results, and global and local a priori estimates for solutions to the problems under investigation. The results are applied to elliptic problems with homogeneous right-hand side and to elliptic problems with rough boundary data in Nikolskii spaces, which allows us to treat some cases of white noise on the boundary.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes