Publikation: Field-effect transistor based on surface negative refraction in Weyl nanowire
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Weyl semimetals are characterized by their bulk Weyl points—conical band touching points that carry a topological monopole charge—and Fermi arc states that span between the Weyl points on the surface of the material. Recently, significant progress has been made toward the understanding and measurement of the physical properties of Weyl semimetals. Yet, potential applications remain relatively sparse. Here we propose Weyl semimetal nanowires as field-effect transistors, dubbed WEYLFETs. Specifically, applying gradient gate voltage along the nanowire, an electric field is generated, which effectively tilts the open surfaces, thus, varying the relative orientation between Fermi arcs on different surfaces. As a result, perfect negative refraction between adjacent surfaces can occur and longitudinal conductance along the wire is suppressed. The WEYLFET offers a high on/off ratio with low power consumption. Adverse effects due to dispersive Fermi arcs and surface disorder are studied.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHEN, Guangze, Wei CHEN, Oded ZILBERBERG, 2020. Field-effect transistor based on surface negative refraction in Weyl nanowire. In: APL Materials. American Institute of Physics (AIP). 2020, 8(1), 011102. eISSN 2166-532X. Available under: doi: 10.1063/1.5126033BibTex
@article{Chen2020Field-55011, year={2020}, doi={10.1063/1.5126033}, title={Field-effect transistor based on surface negative refraction in Weyl nanowire}, number={1}, volume={8}, journal={APL Materials}, author={Chen, Guangze and Chen, Wei and Zilberberg, Oded}, note={Article Number: 011102} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55011"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55011/3/Chen_2-1x95208yv9ryq3.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55011/3/Chen_2-1x95208yv9ryq3.pdf"/> <dc:contributor>Chen, Wei</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55011"/> <dc:creator>Chen, Guangze</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dc:contributor>Zilberberg, Oded</dc:contributor> <dcterms:abstract xml:lang="eng">Weyl semimetals are characterized by their bulk Weyl points—conical band touching points that carry a topological monopole charge—and Fermi arc states that span between the Weyl points on the surface of the material. Recently, significant progress has been made toward the understanding and measurement of the physical properties of Weyl semimetals. Yet, potential applications remain relatively sparse. Here we propose Weyl semimetal nanowires as field-effect transistors, dubbed WEYLFETs. Specifically, applying gradient gate voltage along the nanowire, an electric field is generated, which effectively tilts the open surfaces, thus, varying the relative orientation between Fermi arcs on different surfaces. As a result, perfect negative refraction between adjacent surfaces can occur and longitudinal conductance along the wire is suppressed. The WEYLFET offers a high on/off ratio with low power consumption. Adverse effects due to dispersive Fermi arcs and surface disorder are studied.</dcterms:abstract> <dcterms:title>Field-effect transistor based on surface negative refraction in Weyl nanowire</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-24T08:27:56Z</dc:date> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Chen, Guangze</dc:contributor> <dc:creator>Chen, Wei</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-24T08:27:56Z</dcterms:available> <dc:creator>Zilberberg, Oded</dc:creator> </rdf:Description> </rdf:RDF>