Publikation:

No-Reference Video Quality Assessment Based on Artifact Measurement and Statistical Analysis

Lade...
Vorschaubild

Dateien

Zhu_0-281482.pdf
Zhu_0-281482.pdfGröße: 1.35 MBDownloads: 1316

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Circuits and Systems for Video Technology. 2015, 25(4), pp. 533-546. ISSN 1051-8215. eISSN 1558-2205. Available under: doi: 10.1109/TCSVT.2014.2363737

Zusammenfassung

A DCT-based no-reference video quality prediction model is proposed that measures artifacts and analyzes the statistics of compressed natural videos. The model has two stages: distortion measurement and non-linear mapping. In the first stage, an unsigned AC band, three frequency bands, and two orientation bands are generated from the discrete cosine transform (DCT) coefficients of each decoded frame in a video sequence. Six efficient frame-level features are then extracted to quantify the distortion of natural scenes. In the second stage, each frame-level feature of all frames is transformed to a corresponding video-level feature via a temporal pooling, then a trained multilayer neural network takes all video-level features as inputs and outputs a score as the predicted quality of the video sequence. The proposed method was tested on videos with various compression types, content, and resolution in four databases. We compared our model with a linear model, a support-vectorregression based model, a state-of-the-art training-based model, and four popular full-reference metrics. Detailed experimental results demonstrate that the results of the proposed method are highly correlated with the subjective assessments.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Blocking artifact, DCT, H.264/AVC, natural scene, noreference measure, video quality assessment

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZHU, Kongfeng, Changxiu LI, Vijayan ASARI, Dietmar SAUPE, 2015. No-Reference Video Quality Assessment Based on Artifact Measurement and Statistical Analysis. In: IEEE Transactions on Circuits and Systems for Video Technology. 2015, 25(4), pp. 533-546. ISSN 1051-8215. eISSN 1558-2205. Available under: doi: 10.1109/TCSVT.2014.2363737
BibTex
@article{Zhu2015NoRef-30710,
  year={2015},
  doi={10.1109/TCSVT.2014.2363737},
  title={No-Reference Video Quality Assessment Based on Artifact Measurement and Statistical Analysis},
  number={4},
  volume={25},
  issn={1051-8215},
  journal={IEEE Transactions on Circuits and Systems for Video Technology},
  pages={533--546},
  author={Zhu, Kongfeng and Li, Changxiu and Asari, Vijayan and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30710">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Li, Changxiu</dc:contributor>
    <dcterms:title>No-Reference Video Quality Assessment Based on Artifact Measurement and Statistical Analysis</dcterms:title>
    <dc:creator>Li, Changxiu</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30710"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Zhu, Kongfeng</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-09T09:58:27Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">A DCT-based no-reference video quality prediction model is proposed that measures artifacts and analyzes the statistics of compressed natural videos. The model has two stages: distortion measurement and non-linear mapping. In the first stage, an unsigned AC band, three frequency bands, and two orientation bands are generated from the discrete cosine transform (DCT) coefficients of each decoded frame in a video sequence. Six efficient frame-level features are then extracted to quantify the distortion of natural scenes. In the second stage, each frame-level feature of all frames is transformed to a corresponding video-level feature via a temporal pooling, then a trained multilayer neural network takes all video-level features as inputs and outputs a score as the predicted quality of the video sequence. The proposed method was tested on videos with various compression types, content, and resolution in four databases. We compared our model with a linear model, a support-vectorregression based model, a state-of-the-art training-based model, and four popular full-reference metrics. Detailed experimental results demonstrate that the results of the proposed method are highly correlated with the subjective assessments.</dcterms:abstract>
    <dcterms:issued>2015</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30710/1/Zhu_0-281482.pdf"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:creator>Zhu, Kongfeng</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Asari, Vijayan</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30710/1/Zhu_0-281482.pdf"/>
    <dc:creator>Asari, Vijayan</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-09T09:58:27Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen