Publikation: No-Reference Video Quality Assessment Based on Artifact Measurement and Statistical Analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A DCT-based no-reference video quality prediction model is proposed that measures artifacts and analyzes the statistics of compressed natural videos. The model has two stages: distortion measurement and non-linear mapping. In the first stage, an unsigned AC band, three frequency bands, and two orientation bands are generated from the discrete cosine transform (DCT) coefficients of each decoded frame in a video sequence. Six efficient frame-level features are then extracted to quantify the distortion of natural scenes. In the second stage, each frame-level feature of all frames is transformed to a corresponding video-level feature via a temporal pooling, then a trained multilayer neural network takes all video-level features as inputs and outputs a score as the predicted quality of the video sequence. The proposed method was tested on videos with various compression types, content, and resolution in four databases. We compared our model with a linear model, a support-vectorregression based model, a state-of-the-art training-based model, and four popular full-reference metrics. Detailed experimental results demonstrate that the results of the proposed method are highly correlated with the subjective assessments.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHU, Kongfeng, Changxiu LI, Vijayan ASARI, Dietmar SAUPE, 2015. No-Reference Video Quality Assessment Based on Artifact Measurement and Statistical Analysis. In: IEEE Transactions on Circuits and Systems for Video Technology. 2015, 25(4), pp. 533-546. ISSN 1051-8215. eISSN 1558-2205. Available under: doi: 10.1109/TCSVT.2014.2363737BibTex
@article{Zhu2015NoRef-30710, year={2015}, doi={10.1109/TCSVT.2014.2363737}, title={No-Reference Video Quality Assessment Based on Artifact Measurement and Statistical Analysis}, number={4}, volume={25}, issn={1051-8215}, journal={IEEE Transactions on Circuits and Systems for Video Technology}, pages={533--546}, author={Zhu, Kongfeng and Li, Changxiu and Asari, Vijayan and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30710"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Li, Changxiu</dc:contributor> <dcterms:title>No-Reference Video Quality Assessment Based on Artifact Measurement and Statistical Analysis</dcterms:title> <dc:creator>Li, Changxiu</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30710"/> <dc:language>eng</dc:language> <dc:contributor>Zhu, Kongfeng</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-09T09:58:27Z</dcterms:available> <dcterms:abstract xml:lang="eng">A DCT-based no-reference video quality prediction model is proposed that measures artifacts and analyzes the statistics of compressed natural videos. The model has two stages: distortion measurement and non-linear mapping. In the first stage, an unsigned AC band, three frequency bands, and two orientation bands are generated from the discrete cosine transform (DCT) coefficients of each decoded frame in a video sequence. Six efficient frame-level features are then extracted to quantify the distortion of natural scenes. In the second stage, each frame-level feature of all frames is transformed to a corresponding video-level feature via a temporal pooling, then a trained multilayer neural network takes all video-level features as inputs and outputs a score as the predicted quality of the video sequence. The proposed method was tested on videos with various compression types, content, and resolution in four databases. We compared our model with a linear model, a support-vectorregression based model, a state-of-the-art training-based model, and four popular full-reference metrics. Detailed experimental results demonstrate that the results of the proposed method are highly correlated with the subjective assessments.</dcterms:abstract> <dcterms:issued>2015</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Saupe, Dietmar</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30710/1/Zhu_0-281482.pdf"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:creator>Zhu, Kongfeng</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Asari, Vijayan</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30710/1/Zhu_0-281482.pdf"/> <dc:creator>Asari, Vijayan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-09T09:58:27Z</dc:date> </rdf:Description> </rdf:RDF>