What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
News stories circulating online, especially on social media platforms, are nowadays a primary source of information. Given the nature of social media, news no longer are just news, but they are embedded in the conversations of users interacting with them. This is particularly relevant for inaccurate information or even outright misinformation because user interaction has a crucial impact on whether information is uncritically disseminated or not. Biased coverage has been shown to affect personal decision-making. Still, it remains an open question whether users are aware of the biased reporting they encounter and how they react to it. The latter is particularly relevant given that user reactions help contextualize reporting for other users and can thus help mitigate but may also exacerbate the impact of biased media coverage.
This paper approaches the question from a measurement point of view, examining whether reactions to news articles on Twitter can serve as bias indicators, i.e., whether how users comment on a given article relates to its actual level of bias. We first give an overview of research on media bias before discussing key concepts related to how individuals engage with online content, focusing on the sentiment (or valance) of comments and on outright hate speech. We then present the first dataset connecting reliable human-made media bias classifications of news articles with the reactions these articles received on Twitter. We call our dataset BAT - Bias And Twitter. BAT covers 2,800 (bias-rated) news articles from 255 English-speaking news outlets. Additionally, BAT includes 175,807 comments and retweets referring to the articles.
Based on BAT, we conduct a multi-feature analysis to identify comment characteristics and analyze whether Twitter reactions correlate with an article’s bias. First, we fine-tune and apply two XLNet-based classifiers for hate speech detection and sentiment analysis. Second, we relate the results of the classifiers to the article bias annotations within a multi-level regression. The results show that Twitter reactions to an article indicate its bias, and vice-versa. With a regression coefficient of 0.703 (), we specifically present evidence that Twitter reactions to biased articles are significantly more hateful. Our analysis shows that the news outlet’s individual stance reinforces the hate-bias relationship. In future work, we will extend the dataset and analysis, including additional concepts related to media bias.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPINDE, Timo, Elisabeth RICHTER, Martin WESSEL, Juhi KULSHRESTHA, Karsten DONNAY, 2023. What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter. In: Online Social Networks and Media. Elsevier. 2023, 37-38, 100264. eISSN 2468-6964. Available under: doi: 10.1016/j.osnem.2023.100264BibTex
@article{Spinde2023Twitt-67762, year={2023}, doi={10.1016/j.osnem.2023.100264}, title={What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter}, volume={37-38}, journal={Online Social Networks and Media}, author={Spinde, Timo and Richter, Elisabeth and Wessel, Martin and Kulshrestha, Juhi and Donnay, Karsten}, note={Article Number: 100264} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67762"> <dc:contributor>Kulshrestha, Juhi</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Donnay, Karsten</dc:contributor> <dcterms:abstract>News stories circulating online, especially on social media platforms, are nowadays a primary source of information. Given the nature of social media, news no longer are just news, but they are embedded in the conversations of users interacting with them. This is particularly relevant for inaccurate information or even outright misinformation because user interaction has a crucial impact on whether information is uncritically disseminated or not. Biased coverage has been shown to affect personal decision-making. Still, it remains an open question whether users are aware of the biased reporting they encounter and how they react to it. The latter is particularly relevant given that user reactions help contextualize reporting for other users and can thus help mitigate but may also exacerbate the impact of biased media coverage. This paper approaches the question from a measurement point of view, examining whether reactions to news articles on Twitter can serve as bias indicators, i.e., whether how users comment on a given article relates to its actual level of bias. We first give an overview of research on media bias before discussing key concepts related to how individuals engage with online content, focusing on the sentiment (or valance) of comments and on outright hate speech. We then present the first dataset connecting reliable human-made media bias classifications of news articles with the reactions these articles received on Twitter. We call our dataset BAT - Bias And Twitter. BAT covers 2,800 (bias-rated) news articles from 255 English-speaking news outlets. Additionally, BAT includes 175,807 comments and retweets referring to the articles. Based on BAT, we conduct a multi-feature analysis to identify comment characteristics and analyze whether Twitter reactions correlate with an article’s bias. First, we fine-tune and apply two XLNet-based classifiers for hate speech detection and sentiment analysis. Second, we relate the results of the classifiers to the article bias annotations within a multi-level regression. The results show that Twitter reactions to an article indicate its bias, and vice-versa. With a regression coefficient of 0.703 (), we specifically present evidence that Twitter reactions to biased articles are significantly more hateful. Our analysis shows that the news outlet’s individual stance reinforces the hate-bias relationship. In future work, we will extend the dataset and analysis, including additional concepts related to media bias.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Richter, Elisabeth</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2023</dcterms:issued> <dc:contributor>Spinde, Timo</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Kulshrestha, Juhi</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67762/1/Spinde_2-1xg3flbl3rbmc0.pdf"/> <dc:creator>Donnay, Karsten</dc:creator> <dc:creator>Spinde, Timo</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-12T07:44:20Z</dcterms:available> <dc:creator>Richter, Elisabeth</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67762/1/Spinde_2-1xg3flbl3rbmc0.pdf"/> <dc:creator>Wessel, Martin</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:title>What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67762"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-12T07:44:20Z</dc:date> <dc:contributor>Wessel, Martin</dc:contributor> </rdf:Description> </rdf:RDF>