Publikation:

What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter

Lade...
Vorschaubild

Dateien

Spinde_2-1xg3flbl3rbmc0.pdf
Spinde_2-1xg3flbl3rbmc0.pdfGröße: 1.54 MBDownloads: 51

Datum

2023

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Online Social Networks and Media. Elsevier. 2023, 37-38, 100264. eISSN 2468-6964. Available under: doi: 10.1016/j.osnem.2023.100264

Zusammenfassung

News stories circulating online, especially on social media platforms, are nowadays a primary source of information. Given the nature of social media, news no longer are just news, but they are embedded in the conversations of users interacting with them. This is particularly relevant for inaccurate information or even outright misinformation because user interaction has a crucial impact on whether information is uncritically disseminated or not. Biased coverage has been shown to affect personal decision-making. Still, it remains an open question whether users are aware of the biased reporting they encounter and how they react to it. The latter is particularly relevant given that user reactions help contextualize reporting for other users and can thus help mitigate but may also exacerbate the impact of biased media coverage.

This paper approaches the question from a measurement point of view, examining whether reactions to news articles on Twitter can serve as bias indicators, i.e., whether how users comment on a given article relates to its actual level of bias. We first give an overview of research on media bias before discussing key concepts related to how individuals engage with online content, focusing on the sentiment (or valance) of comments and on outright hate speech. We then present the first dataset connecting reliable human-made media bias classifications of news articles with the reactions these articles received on Twitter. We call our dataset BAT - Bias And Twitter. BAT covers 2,800 (bias-rated) news articles from 255 English-speaking news outlets. Additionally, BAT includes 175,807 comments and retweets referring to the articles.

Based on BAT, we conduct a multi-feature analysis to identify comment characteristics and analyze whether Twitter reactions correlate with an article’s bias. First, we fine-tune and apply two XLNet-based classifiers for hate speech detection and sentiment analysis. Second, we relate the results of the classifiers to the article bias annotations within a multi-level regression. The results show that Twitter reactions to an article indicate its bias, and vice-versa. With a regression coefficient of 0.703 (), we specifically present evidence that Twitter reactions to biased articles are significantly more hateful. Our analysis shows that the news outlet’s individual stance reinforces the hate-bias relationship. In future work, we will extend the dataset and analysis, including additional concepts related to media bias.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Media bias, Sentiment analysis, Hate speech detection, Transfer learning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPINDE, Timo, Elisabeth RICHTER, Martin WESSEL, Juhi KULSHRESTHA, Karsten DONNAY, 2023. What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter. In: Online Social Networks and Media. Elsevier. 2023, 37-38, 100264. eISSN 2468-6964. Available under: doi: 10.1016/j.osnem.2023.100264
BibTex
@article{Spinde2023Twitt-67762,
  year={2023},
  doi={10.1016/j.osnem.2023.100264},
  title={What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter},
  volume={37-38},
  journal={Online Social Networks and Media},
  author={Spinde, Timo and Richter, Elisabeth and Wessel, Martin and Kulshrestha, Juhi and Donnay, Karsten},
  note={Article Number: 100264}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67762">
    <dc:contributor>Kulshrestha, Juhi</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Donnay, Karsten</dc:contributor>
    <dcterms:abstract>News stories circulating online, especially on social media platforms, are nowadays a primary source of information. Given the nature of social media, news no longer are just news, but they are embedded in the conversations of users interacting with them. This is particularly relevant for inaccurate information or even outright misinformation because user interaction has a crucial impact on whether information is uncritically disseminated or not. Biased coverage has been shown to affect personal decision-making. Still, it remains an open question whether users are aware of the biased reporting they encounter and how they react to it. The latter is particularly relevant given that user reactions help contextualize reporting for other users and can thus help mitigate but may also exacerbate the impact of biased media coverage.

This paper approaches the question from a measurement point of view, examining whether reactions to news articles on Twitter can serve as bias indicators, i.e., whether how users comment on a given article relates to its actual level of bias. We first give an overview of research on media bias before discussing key concepts related to how individuals engage with online content, focusing on the sentiment (or valance) of comments and on outright hate speech. We then present the first dataset connecting reliable human-made media bias classifications of news articles with the reactions these articles received on Twitter. We call our dataset BAT - Bias And Twitter. BAT covers 2,800 (bias-rated) news articles from 255 English-speaking news outlets. Additionally, BAT includes 175,807 comments and retweets referring to the articles.

Based on BAT, we conduct a multi-feature analysis to identify comment characteristics and analyze whether Twitter reactions correlate with an article’s bias. First, we fine-tune and apply two XLNet-based classifiers for hate speech detection and sentiment analysis. Second, we relate the results of the classifiers to the article bias annotations within a multi-level regression. The results show that Twitter reactions to an article indicate its bias, and vice-versa. With a regression coefficient of 0.703 (), we specifically present evidence that Twitter reactions to biased articles are significantly more hateful. Our analysis shows that the news outlet’s individual stance reinforces the hate-bias relationship. In future work, we will extend the dataset and analysis, including additional concepts related to media bias.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Richter, Elisabeth</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2023</dcterms:issued>
    <dc:contributor>Spinde, Timo</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Kulshrestha, Juhi</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67762/1/Spinde_2-1xg3flbl3rbmc0.pdf"/>
    <dc:creator>Donnay, Karsten</dc:creator>
    <dc:creator>Spinde, Timo</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-12T07:44:20Z</dcterms:available>
    <dc:creator>Richter, Elisabeth</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67762/1/Spinde_2-1xg3flbl3rbmc0.pdf"/>
    <dc:creator>Wessel, Martin</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:title>What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67762"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-12T07:44:20Z</dc:date>
    <dc:contributor>Wessel, Martin</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen