VAPD : A Visionary System for Uncertainty Aware Decision Making in Crime Analysis
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we describe a visionary system, VAPD, which supports crime analysts in uncertainty aware decision making in use of comparative case analysis. In this scenario, it is crucial for crime analysts to get an accurate estimate of uncertainties included in their data as well as those caused through data transformations and mappings, thus supporting analysts in calibrating their trust in the pieces of evidence gained through data analytics. VAPD consists of one data processing and three visualisation components that adopt a set of guidelines for handling uncertainties. The system focuses on conveying an accurate estimate of these uncertainties on processes and uncertainties that occur within its natural language processing components. Text data analysis is ambiguous and error prone, but is nevertheless an important part of the data analysis. Through its innovative handling of uncertainties, VAPD enables transparent and reliable decisions based on uncertainty-aware visual analytics.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STOFFEL, Florian, Dominik SACHA, Geoffrey ELLIS, Daniel A. KEIM, 2015. VAPD : A Visionary System for Uncertainty Aware Decision Making in Crime Analysis. Symposium on Visualization for Decision Making Under Uncertainty at IEEE VIS 2015. Chicago, Illinois, 26. Okt. 2015. In: Symposium on Visualization for Decision Making Under Uncertainty at IEEE VIS 2015. 2015BibTex
@inproceedings{Stoffel2015Visio-45095, year={2015}, title={VAPD : A Visionary System for Uncertainty Aware Decision Making in Crime Analysis}, url={http://vda.univie.ac.at/uncertainty2015/submissions/stoffel_vdmu.pdf}, booktitle={Symposium on Visualization for Decision Making Under Uncertainty at IEEE VIS 2015}, author={Stoffel, Florian and Sacha, Dominik and Ellis, Geoffrey and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45095"> <dc:contributor>Stoffel, Florian</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dc:contributor>Sacha, Dominik</dc:contributor> <dc:creator>Ellis, Geoffrey</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T12:13:42Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45095"/> <dcterms:abstract xml:lang="eng">In this paper we describe a visionary system, VAPD, which supports crime analysts in uncertainty aware decision making in use of comparative case analysis. In this scenario, it is crucial for crime analysts to get an accurate estimate of uncertainties included in their data as well as those caused through data transformations and mappings, thus supporting analysts in calibrating their trust in the pieces of evidence gained through data analytics. VAPD consists of one data processing and three visualisation components that adopt a set of guidelines for handling uncertainties. The system focuses on conveying an accurate estimate of these uncertainties on processes and uncertainties that occur within its natural language processing components. Text data analysis is ambiguous and error prone, but is nevertheless an important part of the data analysis. Through its innovative handling of uncertainties, VAPD enables transparent and reliable decisions based on uncertainty-aware visual analytics.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45095/1/Stoffel_2-1xkszrbeda1ji3.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:title>VAPD : A Visionary System for Uncertainty Aware Decision Making in Crime Analysis</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Stoffel, Florian</dc:creator> <dc:creator>Sacha, Dominik</dc:creator> <dc:contributor>Ellis, Geoffrey</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45095/1/Stoffel_2-1xkszrbeda1ji3.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T12:13:42Z</dc:date> </rdf:Description> </rdf:RDF>