Publikation:

Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains : Part III

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Gander, Martin J.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ETNA : Electronic Transactions on Numerical Analysis. 2018, 49, pp. 210-243. eISSN 1068-9613. Available under: doi: 10.1553/etna_vol49s210

Zusammenfassung

In the ddCOSMO solvation model for the numerical simulation of molecules (chains of atoms), the unusual observation was made that the associated Schwarz domain-decomposition method converges independently of the number of subdomains (atoms) and this without coarse correction, i.e., the one-level Schwarz method is scalable. We analyzed this unusual property for the simplified case of a rectangular molecule and square subdomains using Fourier analysis, leading to robust convergence estimates in the L2-norm and later also for chains of subdomains represented by disks using maximum principle arguments, leading to robust convergence estimates in L1. A convergence analysis in the more natural H1-setting proving convergence independently of the number of subdomains was, however, missing. We close this gap in this paper using tools from the theory of alternating projection methods and estimates introduced by P.-L. Lions for the study of domain decomposition methods. We prove that robust convergence independently of the number of subdomains is possible also in H1 and show furthermore that even for certain two-dimensional domains with holes, Schwarz methods can be scalable without coarse-space corrections. As a by-product, we review some of the results of P.-L. Lions [On the Schwarz allternating method. I, in Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1988, pp. 1–42] and in some cases provide simpler proofs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

domain decomposition methods, Schwarz methods, chain of subdomains, elliptic PDE, Laplace equation, COSMO solvation model

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CIARAMELLA, Gabriele, Martin J. GANDER, 2018. Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains : Part III. In: ETNA : Electronic Transactions on Numerical Analysis. 2018, 49, pp. 210-243. eISSN 1068-9613. Available under: doi: 10.1553/etna_vol49s210
BibTex
@article{Ciaramella2018Analy-44818,
  year={2018},
  doi={10.1553/etna_vol49s210},
  title={Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains : Part III},
  volume={49},
  journal={ETNA : Electronic Transactions on Numerical Analysis},
  pages={210--243},
  author={Ciaramella, Gabriele and Gander, Martin J.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44818">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">In the ddCOSMO solvation model for the numerical simulation of molecules (chains of atoms), the&#xD;
unusual observation was made that the associated Schwarz domain-decomposition method converges independently of the number of subdomains (atoms) and this without coarse correction, i.e., the one-level Schwarz method is scalable. We analyzed this unusual property for the simplified case of a rectangular molecule and square subdomains using Fourier analysis, leading to robust convergence estimates in the L2-norm and later also for chains of subdomains represented by disks using maximum principle arguments, leading to robust convergence estimates in L1. A convergence analysis in the more natural H1-setting proving convergence independently of the number of subdomains was, however, missing. We close this gap in this paper using tools from the theory of alternating projection methods and estimates introduced by P.-L. Lions for the study of domain decomposition methods. We prove that robust convergence independently of the number of subdomains is possible also in H1 and show furthermore that even for certain two-dimensional domains with holes, Schwarz methods can be scalable without coarse-space corrections. As a by-product, we review some of the results of P.-L. Lions [On the Schwarz allternating method. I, in Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1988, pp. 1–42] and in some cases provide simpler proofs.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains : Part III</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T09:33:29Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44818"/>
    <dcterms:issued>2018</dcterms:issued>
    <dc:creator>Gander, Martin J.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Ciaramella, Gabriele</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T09:33:29Z</dcterms:available>
    <dc:contributor>Ciaramella, Gabriele</dc:contributor>
    <dc:contributor>Gander, Martin J.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen