Publikation:

Application of a semi-automated vocal fingerprinting approach to monitor Bornean gibbon females in an experimentally fragmented landscape in Sabah, Malaysia

Lade...
Vorschaubild

Dateien

Clink_2-1xrxq64da3c9n8.pdf
Clink_2-1xrxq64da3c9n8.pdfGröße: 1.1 MBDownloads: 593

Datum

2019

Autor:innen

Clink, Dena J.
Marshall, Andrew J.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Bioacoustics. 2019, 28(3), pp. 193-209. ISSN 0952-4622. eISSN 2165-0586. Available under: doi: 10.1080/09524622.2018.1426042

Zusammenfassung

Vocal individuality has been documented in a variety of mammalian species and it has been proposed that this individuality can be used as a vocal fingerprint to monitor individuals. Here we provide and test a classification method using Mel-frequency cepstral coefficients (MFCCs) to extract features from Bornean gibbon female calls. Our method is semi-automated as it requires manual pre-processing to identify and extract calls from the original recordings. We compared two methods of MFCC feature extraction: (1) averaging across all time windows and (2) creating a standardized number of time windows for each call. We analysed 376 calls from 33 gibbon females and, using linear discriminant analysis, found that we were able to improve female identification accuracy from 95.7% with spectrogram features to 98.4% accuracy when averaging MFCCs across time windows, and 98.9% accuracy when using a standardized number of windows. We divided our data randomly into training and test data-sets, and tested the accuracy of support vector machine (SVM) predictions over 100 iterations. We found that we could predict female identity in the test data-set with a 98.8% accuracy. Using SVM on our entire data-set, we were able to predict female identity with 99.5% accuracy (validated by leave-one-out cross-validation). Lastly, we used the method presented here to classify four females recorded during three or more recording seasons using SVM with limited success. We provide evidence that MFCC feature extraction is effective for distinguishing between female Bornean gibbons, and make suggestions for future vocal fingerprinting applications.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Support vector machine, Mel-frequency cepstral coefficients, Hylobates , Stability of Altered Forest Ecosystems Project, vocal fingerprinting, acoustic monitoring

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CLINK, Dena J., Margaret C. CROFOOT, Andrew J. MARSHALL, 2019. Application of a semi-automated vocal fingerprinting approach to monitor Bornean gibbon females in an experimentally fragmented landscape in Sabah, Malaysia. In: Bioacoustics. 2019, 28(3), pp. 193-209. ISSN 0952-4622. eISSN 2165-0586. Available under: doi: 10.1080/09524622.2018.1426042
BibTex
@article{Clink2019-05-04Appli-45914,
  year={2019},
  doi={10.1080/09524622.2018.1426042},
  title={Application of a semi-automated vocal fingerprinting approach to monitor Bornean gibbon females in an experimentally fragmented landscape in Sabah, Malaysia},
  number={3},
  volume={28},
  issn={0952-4622},
  journal={Bioacoustics},
  pages={193--209},
  author={Clink, Dena J. and Crofoot, Margaret C. and Marshall, Andrew J.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45914">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Clink, Dena J.</dc:contributor>
    <dc:contributor>Marshall, Andrew J.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45914"/>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Crofoot, Margaret C.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-05-24T13:14:26Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45914/1/Clink_2-1xrxq64da3c9n8.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-05-24T13:14:26Z</dcterms:available>
    <dc:creator>Marshall, Andrew J.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2019-05-04</dcterms:issued>
    <dcterms:title>Application of a semi-automated vocal fingerprinting approach to monitor Bornean gibbon females in an experimentally fragmented landscape in Sabah, Malaysia</dcterms:title>
    <dc:creator>Crofoot, Margaret C.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Vocal individuality has been documented in a variety of mammalian species and it has been proposed that this individuality can be used as a vocal fingerprint to monitor individuals. Here we provide and test a classification method using Mel-frequency cepstral coefficients (MFCCs) to extract features from Bornean gibbon female calls. Our method is semi-automated as it requires manual pre-processing to identify and extract calls from the original recordings. We compared two methods of MFCC feature extraction: (1) averaging across all time windows and (2) creating a standardized number of time windows for each call. We analysed 376 calls from 33 gibbon females and, using linear discriminant analysis, found that we were able to improve female identification accuracy from 95.7% with spectrogram features to 98.4% accuracy when averaging MFCCs across time windows, and 98.9% accuracy when using a standardized number of windows. We divided our data randomly into training and test data-sets, and tested the accuracy of support vector machine (SVM) predictions over 100 iterations. We found that we could predict female identity in the test data-set with a 98.8% accuracy. Using SVM on our entire data-set, we were able to predict female identity with 99.5% accuracy (validated by leave-one-out cross-validation). Lastly, we used the method presented here to classify four females recorded during three or more recording seasons using SVM with limited success. We provide evidence that MFCC feature extraction is effective for distinguishing between female Bornean gibbons, and make suggestions for future vocal fingerprinting applications.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45914/1/Clink_2-1xrxq64da3c9n8.pdf"/>
    <dc:creator>Clink, Dena J.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen