Publikation: A Non-intrusive Neural-Network Based BFGS Algorithm for Parameter Estimation in Non-stationary Elasticity
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2025
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
SEQUEIRA, Adélia, Hrsg., Ana SILVESTRE, Hrsg., Svilen S. VALTCHEV, Hrsg. und andere. Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1. Cham: Springer, 2025, S. 324-334. Lecture Notes in Computational Science and Engineering (LNCSE). 153. ISBN 978-3-031-86172-7. Verfügbar unter: doi: 10.1007/978-3-031-86173-4_33
Zusammenfassung
We present a non-intrusive gradient and a non-intrusive BFGS algorithm for parameter estimation problems in non-stationary elasticity. To avoid multiple (and potentially expensive) solutions of the underlying partial differential equation (PDE), we approximate the PDE solver by a neural network within the algorithms. The network is trained offline for a given set of parameters. The algorithms are applied to an unsteady linear-elastic contact problem; their convergence and approximation properties are investigated numerically.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
European Conference on Numerical Mathematics and Advanced Applications : ENUMATH 2023, 4. Sept. 2023 - 8. Sept. 2023, Lisbon, Portugal
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FREI, Stefan, Jan REICHLE, Stefan VOLKWEIN, 2025. A Non-intrusive Neural-Network Based BFGS Algorithm for Parameter Estimation in Non-stationary Elasticity. European Conference on Numerical Mathematics and Advanced Applications : ENUMATH 2023. Lisbon, Portugal, 4. Sept. 2023 - 8. Sept. 2023. In: SEQUEIRA, Adélia, Hrsg., Ana SILVESTRE, Hrsg., Svilen S. VALTCHEV, Hrsg. und andere. Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1. Cham: Springer, 2025, S. 324-334. Lecture Notes in Computational Science and Engineering (LNCSE). 153. ISBN 978-3-031-86172-7. Verfügbar unter: doi: 10.1007/978-3-031-86173-4_33BibTex
@inproceedings{Frei2025Nonin-73352, title={A Non-intrusive Neural-Network Based BFGS Algorithm for Parameter Estimation in Non-stationary Elasticity}, year={2025}, doi={10.1007/978-3-031-86173-4_33}, number={153}, isbn={978-3-031-86172-7}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computational Science and Engineering (LNCSE)}, booktitle={Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1}, pages={324--334}, editor={Sequeira, Adélia and Silvestre, Ana and Valtchev, Svilen S.}, author={Frei, Stefan and Reichle, Jan and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73352"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Reichle, Jan</dc:contributor> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Frei, Stefan</dc:contributor> <dc:creator>Reichle, Jan</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73352"/> <dc:creator>Frei, Stefan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract>We present a non-intrusive gradient and a non-intrusive BFGS algorithm for parameter estimation problems in non-stationary elasticity. To avoid multiple (and potentially expensive) solutions of the underlying partial differential equation (PDE), we approximate the PDE solver by a neural network within the algorithms. The network is trained offline for a given set of parameters. The algorithms are applied to an unsteady linear-elastic contact problem; their convergence and approximation properties are investigated numerically.</dcterms:abstract> <dc:creator>Volkwein, Stefan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-16T11:35:26Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>A Non-intrusive Neural-Network Based BFGS Algorithm for Parameter Estimation in Non-stationary Elasticity</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-16T11:35:26Z</dcterms:available> <dcterms:issued>2025</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja