Publikation:

A Non-intrusive Neural-Network Based BFGS Algorithm for Parameter Estimation in Non-stationary Elasticity

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

SEQUEIRA, Adélia, Hrsg., Ana SILVESTRE, Hrsg., Svilen S. VALTCHEV, Hrsg. und andere. Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1. Cham: Springer, 2025, S. 324-334. Lecture Notes in Computational Science and Engineering (LNCSE). 153. ISBN 978-3-031-86172-7. Verfügbar unter: doi: 10.1007/978-3-031-86173-4_33

Zusammenfassung

We present a non-intrusive gradient and a non-intrusive BFGS algorithm for parameter estimation problems in non-stationary elasticity. To avoid multiple (and potentially expensive) solutions of the underlying partial differential equation (PDE), we approximate the PDE solver by a neural network within the algorithms. The network is trained offline for a given set of parameters. The algorithms are applied to an unsteady linear-elastic contact problem; their convergence and approximation properties are investigated numerically.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

European Conference on Numerical Mathematics and Advanced Applications : ENUMATH 2023, 4. Sept. 2023 - 8. Sept. 2023, Lisbon, Portugal
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FREI, Stefan, Jan REICHLE, Stefan VOLKWEIN, 2025. A Non-intrusive Neural-Network Based BFGS Algorithm for Parameter Estimation in Non-stationary Elasticity. European Conference on Numerical Mathematics and Advanced Applications : ENUMATH 2023. Lisbon, Portugal, 4. Sept. 2023 - 8. Sept. 2023. In: SEQUEIRA, Adélia, Hrsg., Ana SILVESTRE, Hrsg., Svilen S. VALTCHEV, Hrsg. und andere. Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1. Cham: Springer, 2025, S. 324-334. Lecture Notes in Computational Science and Engineering (LNCSE). 153. ISBN 978-3-031-86172-7. Verfügbar unter: doi: 10.1007/978-3-031-86173-4_33
BibTex
@inproceedings{Frei2025Nonin-73352,
  title={A Non-intrusive Neural-Network Based BFGS Algorithm for Parameter Estimation in Non-stationary Elasticity},
  year={2025},
  doi={10.1007/978-3-031-86173-4_33},
  number={153},
  isbn={978-3-031-86172-7},
  address={Cham},
  publisher={Springer},
  series={Lecture Notes in Computational Science and Engineering (LNCSE)},
  booktitle={Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1},
  pages={324--334},
  editor={Sequeira, Adélia and Silvestre, Ana and Valtchev, Svilen S.},
  author={Frei, Stefan and Reichle, Jan and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73352">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Reichle, Jan</dc:contributor>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Frei, Stefan</dc:contributor>
    <dc:creator>Reichle, Jan</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73352"/>
    <dc:creator>Frei, Stefan</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract>We present a non-intrusive gradient and a non-intrusive BFGS algorithm for parameter estimation problems in non-stationary elasticity. To avoid multiple (and potentially expensive) solutions of the underlying partial differential equation (PDE), we approximate the PDE solver by a neural network within the algorithms. The network is trained offline for a given set of parameters. The algorithms are applied to an unsteady linear-elastic contact problem; their convergence and approximation properties are investigated numerically.</dcterms:abstract>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-16T11:35:26Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>A Non-intrusive Neural-Network Based BFGS Algorithm for Parameter Estimation in Non-stationary Elasticity</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-16T11:35:26Z</dcterms:available>
    <dcterms:issued>2025</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen