Publikation: Emptiness Problems for Integer Circuits
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study the computational complexity of emptiness problems for circuits over sets of natural numbers with the operations union, intersection, complement, addition, and multiplication. For most settings of allowed operations we precisely characterize the complexity in terms of completeness for classes like NL, NP, and PSPACE. The case where intersection, addition, and multiplication is allowed turns out to be equivalent to the complement of polynomial identity testing (PIT). Our results imply the following improvements and insights on problems studied in earlier papers. We improve the bounds for the membership problem MC(\cup,\cap,¯,+,×) studied by McKenzie and Wagner 2007 and for the equivalence problem EQ(\cup,\cap,¯,+,×) studied by Glaßer et al. 2010. Moreover, it turns out that the following problems are equivalent to PIT, which shows that the challenge to improve their bounds is just a reformulation of a major open problem in algebraic computing complexity: 1. membership problem MC(\cap,+,×) studied by McKenzie and Wagner 2007 2. integer membership problems MC_Z(+,×), MC_Z(\cap,+,×) studied by Travers 2006 3. equivalence problem EQ(+,×) studied by Glaßer et al. 2010
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTH, Dominik, Moritz BECK, Titus DOSE, Christian GLASSER, Larissa MICHLER, Marc TECHNAU, 2017. Emptiness Problems for Integer Circuits. 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Aalborg, Denmark, 21. Aug. 2017 - 25. Aug. 2017. In: LARSEN, Kim G., ed., Hans L. BODLAENDER, ed., Jean-François RASKIN, ed.. 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Wadern: Schloss Dagstuhl-Leibniz-Zentrum für Informatik GmbH, 2017, 33. Leibniz International Proceedings in Informatics (LIPIcs). 83. ISSN 1868-8969. ISBN 978-3-95977-046-0. Available under: doi: 10.4230/LIPIcs.MFCS.2017.33BibTex
@inproceedings{Barth2017Empti-44551, year={2017}, doi={10.4230/LIPIcs.MFCS.2017.33}, title={Emptiness Problems for Integer Circuits}, number={83}, isbn={978-3-95977-046-0}, issn={1868-8969}, publisher={Schloss Dagstuhl-Leibniz-Zentrum für Informatik GmbH}, address={Wadern}, series={Leibniz International Proceedings in Informatics (LIPIcs)}, booktitle={42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)}, editor={Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-François}, author={Barth, Dominik and Beck, Moritz and Dose, Titus and Glaßer, Christian and Michler, Larissa and Technau, Marc}, note={Article Number: 33} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44551"> <dcterms:abstract xml:lang="eng">We study the computational complexity of emptiness problems for circuits over sets of natural numbers with the operations union, intersection, complement, addition, and multiplication. For most settings of allowed operations we precisely characterize the complexity in terms of completeness for classes like NL, NP, and PSPACE. The case where intersection, addition, and multiplication is allowed turns out to be equivalent to the complement of polynomial identity testing (PIT). Our results imply the following improvements and insights on problems studied in earlier papers. We improve the bounds for the membership problem MC(\cup,\cap,¯,+,×) studied by McKenzie and Wagner 2007 and for the equivalence problem EQ(\cup,\cap,¯,+,×) studied by Glaßer et al. 2010. Moreover, it turns out that the following problems are equivalent to PIT, which shows that the challenge to improve their bounds is just a reformulation of a major open problem in algebraic computing complexity: 1. membership problem MC(\cap,+,×) studied by McKenzie and Wagner 2007 2. integer membership problems MC_Z(+,×), MC_Z(\cap,+,×) studied by Travers 2006 3. equivalence problem EQ(+,×) studied by Glaßer et al. 2010</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Beck, Moritz</dc:creator> <dc:creator>Barth, Dominik</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-14T11:51:01Z</dc:date> <dcterms:title>Emptiness Problems for Integer Circuits</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Technau, Marc</dc:contributor> <dc:contributor>Glaßer, Christian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-14T11:51:01Z</dcterms:available> <dc:creator>Dose, Titus</dc:creator> <dcterms:issued>2017</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Michler, Larissa</dc:creator> <dc:contributor>Dose, Titus</dc:contributor> <dc:creator>Technau, Marc</dc:creator> <dc:creator>Glaßer, Christian</dc:creator> <dc:contributor>Beck, Moritz</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Michler, Larissa</dc:contributor> <dc:contributor>Barth, Dominik</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44551"/> </rdf:Description> </rdf:RDF>