Publikation:

The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation

Lade...
Vorschaubild

Dateien

Soultan_2-1xzfxv7aytvtg7.pdf
Soultan_2-1xzfxv7aytvtg7.pdfGröße: 1.59 MBDownloads: 321

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PloS one. 2017, 12(11), e0187906. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0187906

Zusammenfassung

Digitized species occurrence data provide an unprecedented source of information for ecologists and conservationists. Species distribution model (SDM) has become a popular method to utilise these data for understanding the spatial and temporal distribution of species, and for modelling biodiversity patterns. Our objective is to study the impact of noise in species occurrence data (namely sample size and positional accuracy) on the performance and reliability of SDM, considering the multiplicative impact of SDM algorithms, species specialisation, and grid resolution. We created a set of four 'virtual' species characterized by different specialisation levels. For each of these species, we built the suitable habitat models using five algorithms at two grid resolutions, with varying sample sizes and different levels of positional accuracy. We assessed the performance and reliability of the SDM according to classic model evaluation metrics (Area Under the Curve and True Skill Statistic) and model agreement metrics (Overall Concordance Correlation Coefficient and geographic niche overlap) respectively. Our study revealed that species specialisation had by far the most dominant impact on the SDM. In contrast to previous studies, we found that for widespread species, low sample size and low positional accuracy were acceptable, and useful distribution ranges could be predicted with as few as 10 species occurrences. Range predictions for narrow-ranged species, however, were sensitive to sample size and positional accuracy, such that useful distribution ranges required at least 20 species occurrences. Against expectations, the MAXENT algorithm poorly predicted the distribution of specialist species at low sample size.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SOULTAN, Alaaeldin, Kamran SAFI, 2017. The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation. In: PloS one. 2017, 12(11), e0187906. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0187906
BibTex
@article{Soultan2017inter-40802,
  year={2017},
  doi={10.1371/journal.pone.0187906},
  title={The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation},
  number={11},
  volume={12},
  journal={PloS one},
  author={Soultan, Alaaeldin and Safi, Kamran},
  note={Article Number: e0187906}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40802">
    <dc:creator>Soultan, Alaaeldin</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40802"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Safi, Kamran</dc:contributor>
    <dcterms:abstract xml:lang="eng">Digitized species occurrence data provide an unprecedented source of information for ecologists and conservationists. Species distribution model (SDM) has become a popular method to utilise these data for understanding the spatial and temporal distribution of species, and for modelling biodiversity patterns. Our objective is to study the impact of noise in species occurrence data (namely sample size and positional accuracy) on the performance and reliability of SDM, considering the multiplicative impact of SDM algorithms, species specialisation, and grid resolution. We created a set of four 'virtual' species characterized by different specialisation levels. For each of these species, we built the suitable habitat models using five algorithms at two grid resolutions, with varying sample sizes and different levels of positional accuracy. We assessed the performance and reliability of the SDM according to classic model evaluation metrics (Area Under the Curve and True Skill Statistic) and model agreement metrics (Overall Concordance Correlation Coefficient and geographic niche overlap) respectively. Our study revealed that species specialisation had by far the most dominant impact on the SDM. In contrast to previous studies, we found that for widespread species, low sample size and low positional accuracy were acceptable, and useful distribution ranges could be predicted with as few as 10 species occurrences. Range predictions for narrow-ranged species, however, were sensitive to sample size and positional accuracy, such that useful distribution ranges required at least 20 species occurrences. Against expectations, the MAXENT algorithm poorly predicted the distribution of specialist species at low sample size.</dcterms:abstract>
    <dcterms:title>The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40802/1/Soultan_2-1xzfxv7aytvtg7.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-30T13:40:53Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40802/1/Soultan_2-1xzfxv7aytvtg7.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Soultan, Alaaeldin</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:issued>2017</dcterms:issued>
    <dc:creator>Safi, Kamran</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-30T13:40:53Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen