Publikation: Coordination Event Detection and Initiator Identification in Time Series Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Behavior initiation is a form of leadership and is an important aspect of social organization that affects the processes of group formation, dynamics, and decision-making in human societies and other social animal species. In this work, we formalize the Coordination Initiator Inference Problem and propose a simple yet powerful framework for extracting periods of coordinated activity and determining individuals who initiated this coordination, based solely on the activity of individuals within a group during those periods. The proposed approach, given arbitrary individual time series, automatically (1) identifies times of coordinated group activity, (2) determines the identities of initiators of those activities, and (3) classifies the likely mechanism by which the group coordination occurred, all of which are novel computational tasks. We demonstrate our framework on both simulated and real-world data: trajectories tracking of animals as well as stock market data. Our method is competitive with existing global leadership inference methods but provides the first approaches for local leadership and coordination mechanism classification. Our results are consistent with ground-truthed biological data and the framework finds many known events in financial data which are not otherwise reflected in the aggregate NASDAQ index. Our method is easily generalizable to any coordinated time series data from interacting entities.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AMORNBUNCHORNVEJ, Chainarong, Ivan BRUGERE, Ariana STRANDBURG-PESHKIN, Damien R. FARINE, Margaret C. CROFOOT, Tanya Y. BERGER-WOLF, 2018. Coordination Event Detection and Initiator Identification in Time Series Data. In: ACM Transactions on Knowledge Discovery from Data. 2018, 12(5), 53. ISSN 1556-4681. eISSN 1556-472X. Available under: doi: 10.1145/3201406BibTex
@article{Amornbunchornvej2018-07-20Coord-43447, year={2018}, doi={10.1145/3201406}, title={Coordination Event Detection and Initiator Identification in Time Series Data}, number={5}, volume={12}, issn={1556-4681}, journal={ACM Transactions on Knowledge Discovery from Data}, author={Amornbunchornvej, Chainarong and Brugere, Ivan and Strandburg-Peshkin, Ariana and Farine, Damien R. and Crofoot, Margaret C. and Berger-Wolf, Tanya Y.}, note={Article Number: 53} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43447"> <dc:contributor>Brugere, Ivan</dc:contributor> <dc:contributor>Amornbunchornvej, Chainarong</dc:contributor> <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor> <dc:creator>Amornbunchornvej, Chainarong</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>Coordination Event Detection and Initiator Identification in Time Series Data</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-08T09:54:52Z</dc:date> <dc:contributor>Crofoot, Margaret C.</dc:contributor> <dc:contributor>Berger-Wolf, Tanya Y.</dc:contributor> <dc:creator>Strandburg-Peshkin, Ariana</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43447/1/Amornbunchornvej_2-1xutrkt2gjuph8.pdf"/> <dc:creator>Crofoot, Margaret C.</dc:creator> <dc:creator>Brugere, Ivan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-08T09:54:52Z</dcterms:available> <dc:creator>Berger-Wolf, Tanya Y.</dc:creator> <dc:creator>Farine, Damien R.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43447"/> <dcterms:issued>2018-07-20</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43447/1/Amornbunchornvej_2-1xutrkt2gjuph8.pdf"/> <dcterms:abstract xml:lang="eng">Behavior initiation is a form of leadership and is an important aspect of social organization that affects the processes of group formation, dynamics, and decision-making in human societies and other social animal species. In this work, we formalize the Coordination Initiator Inference Problem and propose a simple yet powerful framework for extracting periods of coordinated activity and determining individuals who initiated this coordination, based solely on the activity of individuals within a group during those periods. The proposed approach, given arbitrary individual time series, automatically (1) identifies times of coordinated group activity, (2) determines the identities of initiators of those activities, and (3) classifies the likely mechanism by which the group coordination occurred, all of which are novel computational tasks. We demonstrate our framework on both simulated and real-world data: trajectories tracking of animals as well as stock market data. Our method is competitive with existing global leadership inference methods but provides the first approaches for local leadership and coordination mechanism classification. Our results are consistent with ground-truthed biological data and the framework finds many known events in financial data which are not otherwise reflected in the aggregate NASDAQ index. Our method is easily generalizable to any coordinated time series data from interacting entities.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Farine, Damien R.</dc:contributor> </rdf:Description> </rdf:RDF>