Publikation:

Coordination Event Detection and Initiator Identification in Time Series Data

Lade...
Vorschaubild

Dateien

Amornbunchornvej_2-1xutrkt2gjuph8.pdf
Amornbunchornvej_2-1xutrkt2gjuph8.pdfGröße: 3.01 MBDownloads: 128

Datum

2018

Autor:innen

Amornbunchornvej, Chainarong
Brugere, Ivan
Berger-Wolf, Tanya Y.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Transactions on Knowledge Discovery from Data. 2018, 12(5), 53. ISSN 1556-4681. eISSN 1556-472X. Available under: doi: 10.1145/3201406

Zusammenfassung

Behavior initiation is a form of leadership and is an important aspect of social organization that affects the processes of group formation, dynamics, and decision-making in human societies and other social animal species. In this work, we formalize the Coordination Initiator Inference Problem and propose a simple yet powerful framework for extracting periods of coordinated activity and determining individuals who initiated this coordination, based solely on the activity of individuals within a group during those periods. The proposed approach, given arbitrary individual time series, automatically (1) identifies times of coordinated group activity, (2) determines the identities of initiators of those activities, and (3) classifies the likely mechanism by which the group coordination occurred, all of which are novel computational tasks. We demonstrate our framework on both simulated and real-world data: trajectories tracking of animals as well as stock market data. Our method is competitive with existing global leadership inference methods but provides the first approaches for local leadership and coordination mechanism classification. Our results are consistent with ground-truthed biological data and the framework finds many known events in financial data which are not otherwise reflected in the aggregate NASDAQ index. Our method is easily generalizable to any coordinated time series data from interacting entities.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AMORNBUNCHORNVEJ, Chainarong, Ivan BRUGERE, Ariana STRANDBURG-PESHKIN, Damien R. FARINE, Margaret C. CROFOOT, Tanya Y. BERGER-WOLF, 2018. Coordination Event Detection and Initiator Identification in Time Series Data. In: ACM Transactions on Knowledge Discovery from Data. 2018, 12(5), 53. ISSN 1556-4681. eISSN 1556-472X. Available under: doi: 10.1145/3201406
BibTex
@article{Amornbunchornvej2018-07-20Coord-43447,
  year={2018},
  doi={10.1145/3201406},
  title={Coordination Event Detection and Initiator Identification in Time Series Data},
  number={5},
  volume={12},
  issn={1556-4681},
  journal={ACM Transactions on Knowledge Discovery from Data},
  author={Amornbunchornvej, Chainarong and Brugere, Ivan and Strandburg-Peshkin, Ariana and Farine, Damien R. and Crofoot, Margaret C. and Berger-Wolf, Tanya Y.},
  note={Article Number: 53}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43447">
    <dc:contributor>Brugere, Ivan</dc:contributor>
    <dc:contributor>Amornbunchornvej, Chainarong</dc:contributor>
    <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor>
    <dc:creator>Amornbunchornvej, Chainarong</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Coordination Event Detection and Initiator Identification in Time Series Data</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-08T09:54:52Z</dc:date>
    <dc:contributor>Crofoot, Margaret C.</dc:contributor>
    <dc:contributor>Berger-Wolf, Tanya Y.</dc:contributor>
    <dc:creator>Strandburg-Peshkin, Ariana</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43447/1/Amornbunchornvej_2-1xutrkt2gjuph8.pdf"/>
    <dc:creator>Crofoot, Margaret C.</dc:creator>
    <dc:creator>Brugere, Ivan</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-08T09:54:52Z</dcterms:available>
    <dc:creator>Berger-Wolf, Tanya Y.</dc:creator>
    <dc:creator>Farine, Damien R.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43447"/>
    <dcterms:issued>2018-07-20</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43447/1/Amornbunchornvej_2-1xutrkt2gjuph8.pdf"/>
    <dcterms:abstract xml:lang="eng">Behavior initiation is a form of leadership and is an important aspect of social organization that affects the processes of group formation, dynamics, and decision-making in human societies and other social animal species. In this work, we formalize the Coordination Initiator Inference Problem and propose a simple yet powerful framework for extracting periods of coordinated activity and determining individuals who initiated this coordination, based solely on the activity of individuals within a group during those periods. The proposed approach, given arbitrary individual time series, automatically (1) identifies times of coordinated group activity, (2) determines the identities of initiators of those activities, and (3) classifies the likely mechanism by which the group coordination occurred, all of which are novel computational tasks. We demonstrate our framework on both simulated and real-world data: trajectories tracking of animals as well as stock market data. Our method is competitive with existing global leadership inference methods but provides the first approaches for local leadership and coordination mechanism classification. Our results are consistent with ground-truthed biological data and the framework finds many known events in financial data which are not otherwise reflected in the aggregate NASDAQ index. Our method is easily generalizable to any coordinated time series data from interacting entities.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Farine, Damien R.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen