Publikation:

Algorithmic Debugging and Literate Programming to Generate Feedback in Intelligent Tutoring Systems

Lade...
Vorschaubild

Dateien

Zinn_0-295760.pdf
Zinn_0-295760.pdfGröße: 257.46 KBDownloads: 547

Datum

2014

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

LUTZ, Carsten, ed. and others. KI 2014 : Advances in Artificial Intelligence ; 37th Annual German Conference on AI, Stuttgart, Germany, September 22-26, 2014, Proceedings. Cham: Springer, 2014, pp. 37-48. Lecture Notes in Computer Science. 8736. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-11205-3. Available under: doi: 10.1007/978-3-319-11206-0_4

Zusammenfassung

Algorithmic debugging is an effective diagnosis method in intelligent tutoring systems (ITSs). Given an encoding of expert problem-solving as a logic program, it compares the program's behaviour during incremental execution with observed learner behaviour. Any deviation captures a learner error in terms of a program location. The feedback engine of the ITS can then take the program clause in question to generate help for learners to correct their error. With the error information limited to a program location, however, the feedback engine can only give remediation in terms of what's wrong with the current problem solving step. With no access to the overall hierarchical context of a student action, it is hard to dose scaffolding help, to explain why and how a step needs to be performed, to summarize a learner's performance so far, or to prepare the learner for the problem solving still ahead. This is a pity because such scaffolding helps learning. To address this issue, we extend the meta-interpretation technique and complement it with a program annotation approach. The expert program is enriched with terms that explain the logic behind the program, very much like comments explaining code blocks. The meta-interpreter is extended to collect all annotation in the program's execution path, and to keep a record of the relevant parts of the program's proof tree. We obtain a framework that defines sophisticated tutorial interaction in terms of Prolog-based task definition, execution, and monitoring.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Algorithmic Debugging, Logic Programming, Intelligent Tutoring

Konferenz

KI 2014 : 37th Annual German Conference on AI, 22. Sept. 2014 - 26. Sept. 2014, Stuttgart
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZINN, Claus, 2014. Algorithmic Debugging and Literate Programming to Generate Feedback in Intelligent Tutoring Systems. KI 2014 : 37th Annual German Conference on AI. Stuttgart, 22. Sept. 2014 - 26. Sept. 2014. In: LUTZ, Carsten, ed. and others. KI 2014 : Advances in Artificial Intelligence ; 37th Annual German Conference on AI, Stuttgart, Germany, September 22-26, 2014, Proceedings. Cham: Springer, 2014, pp. 37-48. Lecture Notes in Computer Science. 8736. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-11205-3. Available under: doi: 10.1007/978-3-319-11206-0_4
BibTex
@inproceedings{Zinn2014Algor-31651,
  year={2014},
  doi={10.1007/978-3-319-11206-0_4},
  title={Algorithmic Debugging and Literate Programming to Generate Feedback in Intelligent Tutoring Systems},
  number={8736},
  isbn={978-3-319-11205-3},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={KI 2014 : Advances in Artificial Intelligence ; 37th Annual German Conference on AI, Stuttgart, Germany, September 22-26, 2014, Proceedings},
  pages={37--48},
  editor={Lutz, Carsten},
  author={Zinn, Claus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31651">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-08-31T15:14:48Z</dcterms:available>
    <dcterms:title>Algorithmic Debugging and Literate Programming to Generate Feedback in Intelligent Tutoring Systems</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Zinn, Claus</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31651"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2014</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31651/3/Zinn_0-295760.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-08-31T15:14:48Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Zinn, Claus</dc:contributor>
    <dcterms:abstract xml:lang="eng">Algorithmic debugging is an effective diagnosis method in intelligent tutoring systems (ITSs). Given an encoding of expert problem-solving as a logic program, it compares the program's behaviour during incremental execution with observed learner behaviour. Any deviation captures a learner error in terms of a program location. The feedback engine of the ITS can then take the program clause in question to generate help for learners to correct their error. With the error information limited to a program location, however, the feedback engine can only give remediation in terms of what's wrong with the current problem solving step. With no access to the overall hierarchical context of a student action, it is hard to dose scaffolding help, to explain why and how a step needs to be performed, to summarize a learner's performance so far, or to prepare the learner for the problem solving still ahead. This is a pity because such scaffolding helps learning. To address this issue, we extend the meta-interpretation technique and complement it with a program annotation approach. The expert program is enriched with terms that explain the logic behind the program, very much like comments explaining code blocks. The meta-interpreter is extended to collect all annotation in the program's execution path, and to keep a record of the relevant parts of the program's proof tree.  We obtain a framework that defines sophisticated tutorial interaction in terms of Prolog-based task definition, execution, and monitoring.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31651/3/Zinn_0-295760.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen