Publikation:

A real algebra perspective on multivariate tight wavelet frames

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Charina, Maria
Putinar, Mihai
Stöckler, Joachim

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Recent results from real algebraic geometry and the theory of polynomial optimization are related in a new framework to the existence question of multivariate tight wavelet frames whose generators have at least one vanishing moment. Namely, several equivalent formulations of the so-called Unitary Extension Principle by Ron and Shen are interpreted in terms of hermitian sums of squares of certain nonnegative trigonometric polynomials and in terms of semi-definite programming. The latter together with the recent results in algebraic geometry and semi-definite programming allow us to answer affirmatively the long standing open question of the existence of such tight wavelet frames in dimension $d=2$; we also provide numerically efficient methods for checking their existence and actual construction in any dimension. We exhibit a class of counterexamples in dimension $d=3$ showing that, in general, the UEP property is not sufficient for the existence of tight wavelet frames. On the other hand we provide stronger sufficient conditions for the existence of tight wavelet frames in dimension $d > 3$ and illustrate our results by several examples.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHARINA, Maria, Mihai PUTINAR, Claus SCHEIDERER, Joachim STÖCKLER, 2012. A real algebra perspective on multivariate tight wavelet frames
BibTex
@unpublished{Charina2012algeb-23509,
  year={2012},
  title={A real algebra perspective on multivariate tight wavelet frames},
  author={Charina, Maria and Putinar, Mihai and Scheiderer, Claus and Stöckler, Joachim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23509">
    <dc:contributor>Stöckler, Joachim</dc:contributor>
    <dc:contributor>Charina, Maria</dc:contributor>
    <dc:creator>Charina, Maria</dc:creator>
    <dcterms:abstract xml:lang="eng">Recent results from real algebraic geometry and the theory of polynomial optimization are related in a new framework to the existence question of multivariate tight wavelet frames whose generators have at least one vanishing moment. Namely, several equivalent formulations of the so-called Unitary Extension Principle by Ron and Shen are interpreted in terms of hermitian sums of squares of certain nonnegative trigonometric polynomials and in terms of semi-definite programming. The latter together with the recent results in algebraic geometry and semi-definite programming allow us to answer affirmatively the long standing open question of the existence of such tight wavelet frames in dimension $d=2$; we also provide numerically efficient methods for checking their existence and actual construction in any dimension. We exhibit a class of counterexamples in dimension $d=3$ showing that, in general, the UEP property is not sufficient for the existence of tight wavelet frames. On the other hand we provide stronger sufficient conditions for the existence of tight wavelet frames in dimension $d &gt; 3$ and illustrate our results by several examples.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Putinar, Mihai</dc:creator>
    <dcterms:title>A real algebra perspective on multivariate tight wavelet frames</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:13:06Z</dcterms:available>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23509"/>
    <dc:language>eng</dc:language>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dcterms:issued>2012</dcterms:issued>
    <dc:creator>Stöckler, Joachim</dc:creator>
    <dc:contributor>Putinar, Mihai</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:13:06Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen