explAIner : A Visual Analytics Framework for Interactive and Explainable Machine Learning
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose a framework for interactive and explainable machine learning that enables users to (1) understand machine learning models; (2) diagnose model limitations using different explainable AI methods; as well as (3) refine and optimize the models. Our framework combines an iterative XAI pipeline with eight global monitoring and steering mechanisms, including quality monitoring, provenance tracking, model comparison, and trust building. To operationalize the framework, we present explAIner, a visual analytics system for interactive and explainable machine learning that instantiates all phases of the suggested pipeline within the commonly used TensorBoard environment. We performed a user-study with nine participants across different expertise levels to examine their perception of our workflow and to collect suggestions to fill the gap between our system and framework. The evaluation confirms that our tightly integrated system leads to an informed machine learning process while disclosing opportunities for further extensions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPINNER, Thilo, Udo SCHLEGEL, Hanna SCHÄFER, Mennatallah EL-ASSADY, 2020. explAIner : A Visual Analytics Framework for Interactive and Explainable Machine Learning. In: IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 2020, 26(1), pp. 1064-1074. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2019.2934629BibTex
@article{Spinner2020-01explA-49045, year={2020}, doi={10.1109/TVCG.2019.2934629}, title={explAIner : A Visual Analytics Framework for Interactive and Explainable Machine Learning}, number={1}, volume={26}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={1064--1074}, author={Spinner, Thilo and Schlegel, Udo and Schäfer, Hanna and El-Assady, Mennatallah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49045"> <dc:creator>Spinner, Thilo</dc:creator> <dcterms:title>explAIner : A Visual Analytics Framework for Interactive and Explainable Machine Learning</dcterms:title> <dc:contributor>Schlegel, Udo</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Schlegel, Udo</dc:creator> <dc:contributor>Schäfer, Hanna</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-13T13:51:23Z</dc:date> <dc:creator>Schäfer, Hanna</dc:creator> <dc:contributor>Spinner, Thilo</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49045"/> <dcterms:issued>2020-01</dcterms:issued> <dc:creator>El-Assady, Mennatallah</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dcterms:abstract xml:lang="eng">We propose a framework for interactive and explainable machine learning that enables users to (1) understand machine learning models; (2) diagnose model limitations using different explainable AI methods; as well as (3) refine and optimize the models. Our framework combines an iterative XAI pipeline with eight global monitoring and steering mechanisms, including quality monitoring, provenance tracking, model comparison, and trust building. To operationalize the framework, we present explAIner, a visual analytics system for interactive and explainable machine learning that instantiates all phases of the suggested pipeline within the commonly used TensorBoard environment. We performed a user-study with nine participants across different expertise levels to examine their perception of our workflow and to collect suggestions to fill the gap between our system and framework. The evaluation confirms that our tightly integrated system leads to an informed machine learning process while disclosing opportunities for further extensions.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-13T13:51:23Z</dcterms:available> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>