Publikation:

Predicting Migratory Corridors of White Storks, Ciconia ciconia, to Enhance Sustainable Wind Energy Planning : A Data-Driven Agent-Based Model

Lade...
Vorschaubild

Dateien

Oloo_2-1xid65oa49auh5.pdf
Oloo_2-1xid65oa49auh5.pdfGröße: 6.14 MBDownloads: 264

Datum

2018

Autor:innen

Oloo, Francis
Aryal, Jagannath

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Sustainability. MDPI. 2018, 10(5), 1470. eISSN 2071-1050. Available under: doi: 10.3390/su10051470

Zusammenfassung

White storks (Ciconia ciconia) are birds that make annual long-distance migration flights from their breeding grounds in the Northern Hemisphere to the south of Africa. These trips take place in the winter season, when the temperatures in the North fall and food supply drops. White storks, because of their large size, depend on the wind, thermals, and orographic characteristics of the environment in order to minimize their energy expenditure during flight. In particular, the birds adopt a soaring behavior in landscapes where the thermal uplift and orographic updrafts are conducive. By attaining suitable soaring heights, the birds then use the wind characteristics to glide for hundreds of kilometers. It is therefore expected that white storks would prefer landscapes that are characterized by suitable wind and thermal characteristics, which promote the soaring and gliding behaviors. However, these same landscapes are also potential sites for large-scale wind energy generation. In this study, we used the observed data of the white stork movement trajectories to specify a data-driven agent-based model, which simulates flight behavior of the white storks in a dynamic environment. The data on the wind characteristics and thermal uplift are dynamically changed on a daily basis so as to mimic the scenarios that the observed birds experienced during flight. The flight corridors that emerge from the simulated flights are then combined with the predicted surface on the wind energy potential, in order to highlight the potential risk of collision between the migratory white storks and hypothetical wind farms in the locations that are suitable for wind energy developments. This work provides methods that can be adopted to assess the overlap between wind energy potential and migratory corridors of the migration of birds. This can contribute to achieving sustainable trade-offs between wind energy development and conservation of wildlife and, hence, handling the issues of human–wildlife conflicts.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

agent-based models; collision risk; data-driven models; sustainability; wind energy

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690OLOO, Francis, Kamran SAFI, Jagannath ARYAL, 2018. Predicting Migratory Corridors of White Storks, Ciconia ciconia, to Enhance Sustainable Wind Energy Planning : A Data-Driven Agent-Based Model. In: Sustainability. MDPI. 2018, 10(5), 1470. eISSN 2071-1050. Available under: doi: 10.3390/su10051470
BibTex
@article{Oloo2018-05-08Predi-51765,
  year={2018},
  doi={10.3390/su10051470},
  title={Predicting Migratory Corridors of White Storks, Ciconia ciconia, to Enhance Sustainable Wind Energy Planning : A Data-Driven Agent-Based Model},
  number={5},
  volume={10},
  journal={Sustainability},
  author={Oloo, Francis and Safi, Kamran and Aryal, Jagannath},
  note={Article Number: 1470}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51765">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51765"/>
    <dc:creator>Oloo, Francis</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-13T09:40:40Z</dcterms:available>
    <dcterms:title>Predicting Migratory Corridors of White Storks, Ciconia ciconia, to Enhance Sustainable Wind Energy Planning : A Data-Driven Agent-Based Model</dcterms:title>
    <dc:creator>Aryal, Jagannath</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-13T09:40:40Z</dc:date>
    <dcterms:issued>2018-05-08</dcterms:issued>
    <dc:creator>Safi, Kamran</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51765/3/Oloo_2-1xid65oa49auh5.pdf"/>
    <dc:contributor>Oloo, Francis</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51765/3/Oloo_2-1xid65oa49auh5.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Aryal, Jagannath</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Safi, Kamran</dc:contributor>
    <dcterms:abstract xml:lang="eng">White storks (Ciconia ciconia) are birds that make annual long-distance migration flights from their breeding grounds in the Northern Hemisphere to the south of Africa. These trips take place in the winter season, when the temperatures in the North fall and food supply drops. White storks, because of their large size, depend on the wind, thermals, and orographic characteristics of the environment in order to minimize their energy expenditure during flight. In particular, the birds adopt a soaring behavior in landscapes where the thermal uplift and orographic updrafts are conducive. By attaining suitable soaring heights, the birds then use the wind characteristics to glide for hundreds of kilometers. It is therefore expected that white storks would prefer landscapes that are characterized by suitable wind and thermal characteristics, which promote the soaring and gliding behaviors. However, these same landscapes are also potential sites for large-scale wind energy generation. In this study, we used the observed data of the white stork movement trajectories to specify a data-driven agent-based model, which simulates flight behavior of the white storks in a dynamic environment. The data on the wind characteristics and thermal uplift are dynamically changed on a daily basis so as to mimic the scenarios that the observed birds experienced during flight. The flight corridors that emerge from the simulated flights are then combined with the predicted surface on the wind energy potential, in order to highlight the potential risk of collision between the migratory white storks and hypothetical wind farms in the locations that are suitable for wind energy developments. This work provides methods that can be adopted to assess the overlap between wind energy potential and migratory corridors of the migration of birds. This can contribute to achieving sustainable trade-offs between wind energy development and conservation of wildlife and, hence, handling the issues of human–wildlife conflicts.</dcterms:abstract>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen