Publikation: Two Results on the Size of Spectrahedral Descriptions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A spectrahedron is a set defined by a linear matrix inequality. Given a spectrahedron, we are interested in the question of the smallest possible size $r$ of the matrices in the description by linear matrix inequalities. We show that for the $n$-dimensional unit ball $r$ is at least $\frac{n}{2}$. If $n=2^k+1$, then we actually have $r=n$. The same holds true for any compact convex set in $\mathbb{R}^n$ defined by a quadratic polynomial. Furthermore, we show that for a convex region in $\mathbb{R}^3$ whose algebraic boundary is smooth and defined by a cubic polynomial, we have that $r$ is at least five. More precisely, we show that if $A,B,C \in {Sym}_r(\mathbb{R})$ are real symmetric matrices such that $f(x,y,z)=\det(I_r+A x+B y+C z)$ is a cubic polynomial, then the surface in complex projective three-space with affine equation $f(x,y,z)=0$ is singular.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KUMMER, Mario, 2016. Two Results on the Size of Spectrahedral Descriptions. In: SIAM Journal on Optimization. 2016, 26(1), pp. 589-601. ISSN 1052-6234. eISSN 1095-7189. Available under: doi: 10.1137/15M1030789BibTex
@article{Kummer2016-02-25Resul-34059, year={2016}, doi={10.1137/15M1030789}, title={Two Results on the Size of Spectrahedral Descriptions}, number={1}, volume={26}, issn={1052-6234}, journal={SIAM Journal on Optimization}, pages={589--601}, author={Kummer, Mario} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34059"> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Kummer, Mario</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kummer, Mario</dc:creator> <dcterms:abstract xml:lang="eng">A spectrahedron is a set defined by a linear matrix inequality. Given a spectrahedron, we are interested in the question of the smallest possible size $r$ of the matrices in the description by linear matrix inequalities. We show that for the $n$-dimensional unit ball $r$ is at least $\frac{n}{2}$. If $n=2^k+1$, then we actually have $r=n$. The same holds true for any compact convex set in $\mathbb{R}^n$ defined by a quadratic polynomial. Furthermore, we show that for a convex region in $\mathbb{R}^3$ whose algebraic boundary is smooth and defined by a cubic polynomial, we have that $r$ is at least five. More precisely, we show that if $A,B,C \in {Sym}_r(\mathbb{R})$ are real symmetric matrices such that $f(x,y,z)=\det(I_r+A x+B y+C z)$ is a cubic polynomial, then the surface in complex projective three-space with affine equation $f(x,y,z)=0$ is singular.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-05-23T09:39:43Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34059"/> <dcterms:title>Two Results on the Size of Spectrahedral Descriptions</dcterms:title> <dcterms:issued>2016-02-25</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-05-23T09:39:43Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>