Publikation: Blind Detection of Region Duplication Forgery Using Fractal Coding and Feature Matching
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Digital image forgery detection is important because of its wide use in applications such as medical diagnosis, legal investigations, and entertainment. Copy-move forgery is one of the famous techniques, which is used in region duplication. Many of the existing copy-move detection algorithms cannot effectively blind detect duplicated regions that are made by powerful image manipulation software like Photoshop. In this study, a new method is proposed for blind detecting manipulations in digital images based on modified fractal coding and feature vector matching. The proposed method not only detects typical copy-move forgery, but also finds multiple copied forgery regions for images that are subjected to rotation, scaling, reflection, and a mixture of these postprocessing operations. The proposed method is robust against tampered images undergoing attacks such as Gaussian blurring, contrast scaling, and brightness adjustment. The experimental results demonstrated the validity and efficiency of the method.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JENADELEH, Mohsen, Mohsen EBRAHIMI MOGHADDAM, 2016. Blind Detection of Region Duplication Forgery Using Fractal Coding and Feature Matching. In: Journal of Forensic Sciences. 2016, 61(3), pp. 623-636. ISSN 0022-1198. eISSN 1556-4029. Available under: doi: 10.1111/1556-4029.13108BibTex
@article{Jenadeleh2016-05Blind-39649, year={2016}, doi={10.1111/1556-4029.13108}, title={Blind Detection of Region Duplication Forgery Using Fractal Coding and Feature Matching}, number={3}, volume={61}, issn={0022-1198}, journal={Journal of Forensic Sciences}, pages={623--636}, author={Jenadeleh, Mohsen and Ebrahimi Moghaddam, Mohsen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39649"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-25T08:43:13Z</dcterms:available> <dc:creator>Ebrahimi Moghaddam, Mohsen</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39649"/> <dcterms:title>Blind Detection of Region Duplication Forgery Using Fractal Coding and Feature Matching</dcterms:title> <dc:contributor>Jenadeleh, Mohsen</dc:contributor> <dcterms:abstract xml:lang="eng">Digital image forgery detection is important because of its wide use in applications such as medical diagnosis, legal investigations, and entertainment. Copy-move forgery is one of the famous techniques, which is used in region duplication. Many of the existing copy-move detection algorithms cannot effectively blind detect duplicated regions that are made by powerful image manipulation software like Photoshop. In this study, a new method is proposed for blind detecting manipulations in digital images based on modified fractal coding and feature vector matching. The proposed method not only detects typical copy-move forgery, but also finds multiple copied forgery regions for images that are subjected to rotation, scaling, reflection, and a mixture of these postprocessing operations. The proposed method is robust against tampered images undergoing attacks such as Gaussian blurring, contrast scaling, and brightness adjustment. The experimental results demonstrated the validity and efficiency of the method.</dcterms:abstract> <dcterms:issued>2016-05</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-25T08:43:13Z</dc:date> <dc:contributor>Ebrahimi Moghaddam, Mohsen</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Jenadeleh, Mohsen</dc:creator> </rdf:Description> </rdf:RDF>