Publikation:

Blind Detection of Region Duplication Forgery Using Fractal Coding and Feature Matching

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Ebrahimi Moghaddam, Mohsen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Forensic Sciences. 2016, 61(3), pp. 623-636. ISSN 0022-1198. eISSN 1556-4029. Available under: doi: 10.1111/1556-4029.13108

Zusammenfassung

Digital image forgery detection is important because of its wide use in applications such as medical diagnosis, legal investigations, and entertainment. Copy-move forgery is one of the famous techniques, which is used in region duplication. Many of the existing copy-move detection algorithms cannot effectively blind detect duplicated regions that are made by powerful image manipulation software like Photoshop. In this study, a new method is proposed for blind detecting manipulations in digital images based on modified fractal coding and feature vector matching. The proposed method not only detects typical copy-move forgery, but also finds multiple copied forgery regions for images that are subjected to rotation, scaling, reflection, and a mixture of these postprocessing operations. The proposed method is robust against tampered images undergoing attacks such as Gaussian blurring, contrast scaling, and brightness adjustment. The experimental results demonstrated the validity and efficiency of the method.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JENADELEH, Mohsen, Mohsen EBRAHIMI MOGHADDAM, 2016. Blind Detection of Region Duplication Forgery Using Fractal Coding and Feature Matching. In: Journal of Forensic Sciences. 2016, 61(3), pp. 623-636. ISSN 0022-1198. eISSN 1556-4029. Available under: doi: 10.1111/1556-4029.13108
BibTex
@article{Jenadeleh2016-05Blind-39649,
  year={2016},
  doi={10.1111/1556-4029.13108},
  title={Blind Detection of Region Duplication Forgery Using Fractal Coding and Feature Matching},
  number={3},
  volume={61},
  issn={0022-1198},
  journal={Journal of Forensic Sciences},
  pages={623--636},
  author={Jenadeleh, Mohsen and Ebrahimi Moghaddam, Mohsen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39649">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-25T08:43:13Z</dcterms:available>
    <dc:creator>Ebrahimi Moghaddam, Mohsen</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39649"/>
    <dcterms:title>Blind Detection of Region Duplication Forgery Using Fractal Coding and Feature Matching</dcterms:title>
    <dc:contributor>Jenadeleh, Mohsen</dc:contributor>
    <dcterms:abstract xml:lang="eng">Digital image forgery detection is important because of its wide use in applications such as medical diagnosis, legal investigations, and entertainment. Copy-move forgery is one of the famous techniques, which is used in region duplication. Many of the existing copy-move detection algorithms cannot effectively blind detect duplicated regions that are made by powerful image manipulation software like Photoshop. In this study, a new method is proposed for blind detecting manipulations in digital images based on modified fractal coding and feature vector matching. The proposed method not only detects typical copy-move forgery, but also finds multiple copied forgery regions for images that are subjected to rotation, scaling, reflection, and a mixture of these postprocessing operations. The proposed method is robust against tampered images undergoing attacks such as Gaussian blurring, contrast scaling, and brightness adjustment. The experimental results demonstrated the validity and efficiency of the method.</dcterms:abstract>
    <dcterms:issued>2016-05</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-25T08:43:13Z</dc:date>
    <dc:contributor>Ebrahimi Moghaddam, Mohsen</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Jenadeleh, Mohsen</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen