Publikation: Interspecific interactions of heterotrophic bacteria during chitin degradation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In their natural habitats, bacteria live in multi-species microbial communities and are, thus, constantly interacting with bacteria of other phylogenetic groups. In order to prevail in these interspecific interactions, such as the competition for nutrients, bacteria have developed numerous strategies. During the degradation of polymers such interspecific interactions are likely to occur, because degradation starts as an extracellular process. In one possible interaction scenario, investor bacteria, which invest energy in the production of extracellular enzymes, face the danger of being exploited by opportunistic bacteria that compete for degradation products. To investigate such a scenario and to characterize the strategies employed by the bacteria involved, we established two co-culture model-systems consisting of bacteria that co-exist in aquatic environments and with the polymer chitin as carbon, nitrogen, and energy source. Aeromonas hydrophila strain AH-1N, which releases extracellular chitinases, was employed as investor bacterium in both co-cultures.
In the first co-culture, chitin embedded in agarose served as substrate. Flavobacterium sp. strain 4D9, which cannot degrade embedded chitin due to its cell-associated chitinases, was employed as opportunistic bacterium. The strategies applied by strain 4D9 in order to acquire nutrients included active integration into the biofilm formed by strain AH-1N on the chitin beads and interception of the chitin monomer N-acetylglucosamine (GlcNAc), leading to overgrowth of strain AH-1N by strain 4D9 in the biofilm.
In the second co-culture, suspended chitin served as substrate. Pseudomonas aeruginosa strain PAO1, which is unable to degrade chitin, was employed as opportunistic bacterium. In the first phase of the co-culture, strain PAO1 grew with ammonium, acetate, and possibly GlcNAc and other compounds, which were released by strain AH-1N. In the second phase, strain PAO1 produced quorum sensing (QS)-controlled secondary metabolites, among them the redox active pigment pyocyanin. Pyocyanin inhibited the enzyme aconitase of strain AH-1N through the production of reactive oxygen species causing a block of the citric acid cycle. This led to a massive acetate release by strain AH-1N, which supported substantial growth of strain PAO1. Strain AH-1N was finally inactivated by pyocyanin and presumably other secondary metabolites. Further investigation of this parasitic growth strategy of strain PAO1 revealed that, while catabolite repression of GlcNAc metabolism by acetate did not play a role, the action of isocitrate lyase was a key metabolic requirement for the transition into the second phase. Besides its role in acetate utilization, this enzyme was crucial for the utilization of GlcNAc. The ability to synthesize amino acids was a metabolic requirement of strain PAO1 as well. The overexpression of the QS effector protein PqsE regulating pyocyanin production could not restore formation of pyocyanin in auxotrophic mutants. P. aeruginosa possesses three QS systems. For the QS response of strain PAO1 in the co-culture, both the rhl and the 2-alkyl-4(1H)-quinolone system were crucial, whereas the las system was dispensable. Lack of the rhl signal synthase could be complemented by cross-talk with signals of strain AH-1N. By applying transposon mutagenesis and screening for mutants of strain PAO1 with defects in QS-regulated processes, we could identify several genes that were involved in the regulation of pyocyanin production. Among them were members of the gene cluster PA1415-PA1421, mutations of which led to a decreased production of pyocyanin and accelerated growth with the polyamine spermin.
By employing our co-culture model systems to study interspecific interactions, we could identify strategies of bacteria that are likely to be important in their natural habitats. With regard to P. aeruginosa, our model system offers the possibility to study QS under conditions that are more ecologically relevant than in single culture.
Zusammenfassung in einer weiteren Sprache
Bakterien sind in ihren natürlichen Habitaten Bestandteil mikrobieller Gemeinschaften und befinden sich somit in ständiger Interaktion mit Bakterien verschiedener phylogenetischer Gruppen. Um in diesen Konkurrenzsituationen zu bestehen, haben Bakterien eine Vielzahl verschiedener Strategien entwickelt. Solch interspezifische Interaktionen sind während des Abbaus von Polymeren sehr wahrscheinlich, da dieser als extrazellulärer Prozess initiiert wird. In einem möglichen Interaktionsszenario werden Bakterien (Investoren), die Energie in die Produktion von extrazellulären Enzymen investieren, von opportunistischen Bakterien ausgenutzt, welche mit ihnen um die Abbauprodukte konkurrieren. Um ein solches Szenario zu untersuchen und die von den beteiligten Bakterien angewandten Strategien zu charakterisieren, entwickelten wir zwei Modellsysteme, die aus jeweils einer Co-Kultur bestanden. Diese Co-Kulturen enthielten Bakterien, die in denselben aquatischen Habitaten vorkommen, sowie das Polymer Chitin als Kohlenstoff-, Stickstoff-, und Energiequelle. Als Investor in beiden Co-Kulturen wurde Aeromonas hydrophila Stamm AH-1N eingesetzt, welcher extrazelluläre Chitinasen sezerniert.
In der ersten Co-Kultur wurde in Agarose eingebettetes Chitin als Substrat verwendet. Als opportunistisches Bakterium wurde Flavobacterium sp. Stamm 4D9 eingesetzt, der aufgrund seiner zellassoziierten Chitinasen kein eingebettetes Chitin abbauen kann. Die Strategien, die Stamm 4D9 anwandte, um an Nährstoffe zu gelangen, beinhalteten die aktive Integration in den von Stamm AH-1N auf den Chitinkugeln gebildeten Biofilm und das Abfangen des Chitinmonomers N-Acetylglucosamin (GlcNAc). Dies hatte zur Folge, dass Stamm AH-1N durch Stamm 4D9 im Biofilm überwachsen wurde.
In der zweiten Co-Kultur wurde suspendiertes Chitin als Substrat verwendet. Als opportunistisches Bakterium wurde Pseudomonas aeruginosa Stamm PAO1 eingesetzt, welcher Chitin nicht abbauen kann. In der ersten Phase der Co-Kultur nutzte Stamm PAO1 Ammonium, Acetat und wahrscheinlich GlcNAc und andere Verbindungen als Wachstumssubstrate, die von Stamm AH-1N freigesetzt wurden. In der zweiten Phase bildete Stamm PAO1 quorum sensing (QS)-regulierte Sekundärmetabolite, darunter den redoxaktiven Farbstoff Pyocyanin. Pyocyanin inhibierte durch die Bildung von reaktiven Sauerstoffspezies das Enzym Aconitase des Stammes AH-1N, was eine Blockade des Citratzyklus zur Folge hatte. Dadurch kam es zur Freisetzung einer großen Menge von Acetat durch Stamm AH-1N, welches von Stamm PAO1 als Substrat genutzt werden konnte. Stamm AH-1N wurde schließlich durch Pyocyanin und vermutlich auch durch andere Sekundärmetabolite inaktiviert. Weitere Untersuchungen dieser parasitischen Wachstumsstrategie ergaben, dass die Aktivität der Isocitratlyase eine wichtige metabolische Voraussetzung für den Übergang von der ersten in die zweite Phase durch Stamm PAO1 darstellte. Eine mögliche Katabolitrepression des GlcNAc-Stoffwechsels durch Acetat spielte hierbei keine Rolle. Neben ihrer Beteiligung an der Assimilation von Acetat war die Isocitratlyase essentiell für das Wachstum mit GlcNAc. Eine weitere metabolische Voraussetzung für Stamm PAO1 stellte die Fähigkeit, Aminosäuren zu synthetisieren, dar. Die Bildung von Pyocyanin durch Mutanten, die für Aminosäuren auxotroph waren, konnte selbst durch Überexpression des QS-Effektorproteins PqsE, das diese Bildung reguliert, nicht wiederhergestellt werden. P. aeruginosa besitzt drei QS-Systeme. Für die QS-Antwort des Stammes PAO1 in der Co-Kultur waren das rhl- und das 2-alkyl-4(1H)-Chinolon-System essentiell, während das las-System entbehrlich war. Die Mutation der Signalsynthase des rhl-Systems konnte durch Signale von Stamm AH-1N komplementiert werden. Die Durchführung einer Transposonmutagenese und die darauffolgende Suche nach Mutanten des Stammes PAO1 mit Defekten in QS-regulierten Prozessen führten zur Identifizierung von Genen, die an der Regulation der Pyocyaninbildung beteiligt waren. Darunter befanden sich Gene des Genclusters PA1415-PA1421, deren Mutation zu einer verringerten Bildung von Pyocyanin und einem beschleunigtem Wachstum mit dem Polyamin Spermin führten.
Die Nutzung unserer Modellsysteme für die Analyse interspezifischer Interaktionen führte zur Identifizierung von Strategien der beteiligten Bakterien, die auch in ihren natürlichen Habitaten wirksam sein könnten. In Bezug auf P. aeruginosa ermöglicht es unsere Co-Kultur, QS unter Bedingungen zu analysieren, die ökologisch relevanter sind als die einer Reinkultur.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JAGMANN, Nina, 2012. Interspecific interactions of heterotrophic bacteria during chitin degradation [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Jagmann2012Inter-20110, year={2012}, title={Interspecific interactions of heterotrophic bacteria during chitin degradation}, author={Jagmann, Nina}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/20110"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/20110"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-08-15T12:03:39Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20110/2/Diss_Jagmann.pdf"/> <dcterms:title>Interspecific interactions of heterotrophic bacteria during chitin degradation</dcterms:title> <dcterms:abstract xml:lang="eng">In their natural habitats, bacteria live in multi-species microbial communities and are, thus, constantly interacting with bacteria of other phylogenetic groups. In order to prevail in these interspecific interactions, such as the competition for nutrients, bacteria have developed numerous strategies. During the degradation of polymers such interspecific interactions are likely to occur, because degradation starts as an extracellular process. In one possible interaction scenario, investor bacteria, which invest energy in the production of extracellular enzymes, face the danger of being exploited by opportunistic bacteria that compete for degradation products. To investigate such a scenario and to characterize the strategies employed by the bacteria involved, we established two co-culture model-systems consisting of bacteria that co-exist in aquatic environments and with the polymer chitin as carbon, nitrogen, and energy source. Aeromonas hydrophila strain AH-1N, which releases extracellular chitinases, was employed as investor bacterium in both co-cultures.<br /><br />In the first co-culture, chitin embedded in agarose served as substrate. Flavobacterium sp. strain 4D9, which cannot degrade embedded chitin due to its cell-associated chitinases, was employed as opportunistic bacterium. The strategies applied by strain 4D9 in order to acquire nutrients included active integration into the biofilm formed by strain AH-1N on the chitin beads and interception of the chitin monomer N-acetylglucosamine (GlcNAc), leading to overgrowth of strain AH-1N by strain 4D9 in the biofilm.<br /><br />In the second co-culture, suspended chitin served as substrate. Pseudomonas aeruginosa strain PAO1, which is unable to degrade chitin, was employed as opportunistic bacterium. In the first phase of the co-culture, strain PAO1 grew with ammonium, acetate, and possibly GlcNAc and other compounds, which were released by strain AH-1N. In the second phase, strain PAO1 produced quorum sensing (QS)-controlled secondary metabolites, among them the redox active pigment pyocyanin. Pyocyanin inhibited the enzyme aconitase of strain AH-1N through the production of reactive oxygen species causing a block of the citric acid cycle. This led to a massive acetate release by strain AH-1N, which supported substantial growth of strain PAO1. Strain AH-1N was finally inactivated by pyocyanin and presumably other secondary metabolites. Further investigation of this parasitic growth strategy of strain PAO1 revealed that, while catabolite repression of GlcNAc metabolism by acetate did not play a role, the action of isocitrate lyase was a key metabolic requirement for the transition into the second phase. Besides its role in acetate utilization, this enzyme was crucial for the utilization of GlcNAc. The ability to synthesize amino acids was a metabolic requirement of strain PAO1 as well. The overexpression of the QS effector protein PqsE regulating pyocyanin production could not restore formation of pyocyanin in auxotrophic mutants. P. aeruginosa possesses three QS systems. For the QS response of strain PAO1 in the co-culture, both the rhl and the 2-alkyl-4(1H)-quinolone system were crucial, whereas the las system was dispensable. Lack of the rhl signal synthase could be complemented by cross-talk with signals of strain AH-1N. By applying transposon mutagenesis and screening for mutants of strain PAO1 with defects in QS-regulated processes, we could identify several genes that were involved in the regulation of pyocyanin production. Among them were members of the gene cluster PA1415-PA1421, mutations of which led to a decreased production of pyocyanin and accelerated growth with the polyamine spermin.<br /><br />By employing our co-culture model systems to study interspecific interactions, we could identify strategies of bacteria that are likely to be important in their natural habitats. With regard to P. aeruginosa, our model system offers the possibility to study QS under conditions that are more ecologically relevant than in single culture.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-19T22:25:04Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20110/2/Diss_Jagmann.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Jagmann, Nina</dc:contributor> <dc:creator>Jagmann, Nina</dc:creator> <dcterms:issued>2012</dcterms:issued> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>