Publikation:

Projecting armed conflict risk in Africa towards 2050 along the SSP-RCP scenarios : a machine learning approach

Lade...
Vorschaubild

Dateien

Hoch_2-1x8i3vmyoeh846.pdf
Hoch_2-1x8i3vmyoeh846.pdfGröße: 4.7 MBDownloads: 6

Datum

2021

Autor:innen

Hoch, Jannis M
de Bruin, Sophie P
Buhaug, Halvard
van Beek, Rens
Wanders, Niko

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Environmental Research Letters. IOP Publishing. 2021, 16(12), 124068. eISSN 1748-9326. Verfügbar unter: doi: 10.1088/1748-9326/ac3db2

Zusammenfassung

In the past decade, several efforts have been made to project armed conflict risk into the future. This study broadens current approaches by presenting a first-of-its-kind application of machine learning (ML) methods to project sub-national armed conflict risk over the African continent along three Shared Socioeconomic Pathway (SSP) scenarios and three Representative Concentration Pathways towards 2050. Results of the open-source ML framework CoPro are consistent with the underlying socioeconomic storylines of the SSPs, and the resulting out-of-sample armed conflict projections obtained with Random Forest classifiers agree with the patterns observed in comparable studies. In SSP1-RCP2.6, conflict risk is low in most regions although the Horn of Africa and parts of East Africa continue to be conflict-prone. Conflict risk increases in the more adverse SSP3-RCP6.0 scenario, especially in Central Africa and large parts of Western Africa. We specifically assessed the role of hydro-climatic indicators as drivers of armed conflict. Overall, their importance is limited compared to main conflict predictors but results suggest that changing climatic conditions may both increase and decrease conflict risk, depending on the location: in Northern Africa and large parts of Eastern Africa climate change increases projected conflict risk whereas for areas in the West and northern part of the Sahel shifting climatic conditions may reduce conflict risk. With our study being at the forefront of ML applications for conflict risk projections, we identify various challenges for this arising scientific field. A major concern is the limited selection of relevant quantified indicators for the SSPs at present. Nevertheless, ML models such as the one presented here are a viable and scalable way forward in the field of armed conflict risk projections, and can help to inform the policy-making process with respect to climate security.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

conflict risk, climate change, machine learning, water security, scenarios

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HOCH, Jannis M, Sophie P DE BRUIN, Halvard BUHAUG, Nina VON UEXKULL, Rens VAN BEEK, Niko WANDERS, 2021. Projecting armed conflict risk in Africa towards 2050 along the SSP-RCP scenarios : a machine learning approach. In: Environmental Research Letters. IOP Publishing. 2021, 16(12), 124068. eISSN 1748-9326. Verfügbar unter: doi: 10.1088/1748-9326/ac3db2
BibTex
@article{Hoch2021-12-01Proje-71330,
  year={2021},
  doi={10.1088/1748-9326/ac3db2},
  title={Projecting armed conflict risk in Africa towards 2050 along the SSP-RCP scenarios : a machine learning approach},
  number={12},
  volume={16},
  journal={Environmental Research Letters},
  author={Hoch, Jannis M and de Bruin, Sophie P and Buhaug, Halvard and von Uexkull, Nina and van Beek, Rens and Wanders, Niko},
  note={Article Number: 124068}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71330">
    <dc:creator>Hoch, Jannis M</dc:creator>
    <dc:contributor>Hoch, Jannis M</dc:contributor>
    <dc:contributor>von Uexkull, Nina</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-19T08:19:06Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:title>Projecting armed conflict risk in Africa towards 2050 along the SSP-RCP scenarios : a machine learning approach</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71330/4/Hoch_2-1x8i3vmyoeh846.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>von Uexkull, Nina</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71330"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Wanders, Niko</dc:contributor>
    <dc:contributor>de Bruin, Sophie P</dc:contributor>
    <dc:contributor>Buhaug, Halvard</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Wanders, Niko</dc:creator>
    <dcterms:abstract>In the past decade, several efforts have been made to project armed conflict risk into the future. This study broadens current approaches by presenting a first-of-its-kind application of machine learning (ML) methods to project sub-national armed conflict risk over the African continent along three Shared Socioeconomic Pathway (SSP) scenarios and three Representative Concentration Pathways towards 2050. Results of the open-source ML framework CoPro are consistent with the underlying socioeconomic storylines of the SSPs, and the resulting out-of-sample armed conflict projections obtained with Random Forest classifiers agree with the patterns observed in comparable studies. In SSP1-RCP2.6, conflict risk is low in most regions although the Horn of Africa and parts of East Africa continue to be conflict-prone. Conflict risk increases in the more adverse SSP3-RCP6.0 scenario, especially in Central Africa and large parts of Western Africa. We specifically assessed the role of hydro-climatic indicators as drivers of armed conflict. Overall, their importance is limited compared to main conflict predictors but results suggest that changing climatic conditions may both increase and decrease conflict risk, depending on the location: in Northern Africa and large parts of Eastern Africa climate change increases projected conflict risk whereas for areas in the West and northern part of the Sahel shifting climatic conditions may reduce conflict risk. With our study being at the forefront of ML applications for conflict risk projections, we identify various challenges for this arising scientific field. A major concern is the limited selection of relevant quantified indicators for the SSPs at present. Nevertheless, ML models such as the one presented here are a viable and scalable way forward in the field of armed conflict risk projections, and can help to inform the policy-making process with respect to climate security.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71330/4/Hoch_2-1x8i3vmyoeh846.pdf"/>
    <dc:creator>de Bruin, Sophie P</dc:creator>
    <dcterms:issued>2021-12-01</dcterms:issued>
    <dc:creator>van Beek, Rens</dc:creator>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>van Beek, Rens</dc:contributor>
    <dc:creator>Buhaug, Halvard</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-19T08:19:06Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen