Publikation:

A comparison of imprecise Bayesianism and Dempster–Shafer theory for automated decisions under ambiguity

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Peden, William
Tortoli, Daniele
De Pretis, Francesco

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 420094936

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Logic and Computation. Oxford University Press (OUP). ISSN 0955-792X. eISSN 1465-363X. Verfügbar unter: doi: 10.1093/logcom/exae069

Zusammenfassung

Ambiguity occurs insofar as a reasoner lacks information about the relevant physical probabilities. There are objections to the application of standard Bayesian inductive logic and decision theory in contexts of significant ambiguity. A variety of alternative frameworks for reasoning under ambiguity have been proposed. Two of the most prominent are Imprecise Bayesianism and Dempster–Shafer theory. We compare these inductive logics with respect to the Ambiguity Dilemma, which is a problem that has been raised for Imprecise Bayesianism. We develop an agent-based model comparison that isolates the difference between the two inductive logics in their updating methods. We find that Dempster–Shafer theory does not avoid the Ambiguity Dilemma. We discuss the implications of this result.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

belief functions, decisions under severe uncertainty, Dempster–Shafer theory, formal epistemology, Imprecise Bayesianism, Imprecise probability

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RADZVILAS, Mantas, William PEDEN, Daniele TORTOLI, Francesco DE PRETIS, 2024. A comparison of imprecise Bayesianism and Dempster–Shafer theory for automated decisions under ambiguity. In: Journal of Logic and Computation. Oxford University Press (OUP). ISSN 0955-792X. eISSN 1465-363X. Verfügbar unter: doi: 10.1093/logcom/exae069
BibTex
@article{Radzvilas2024-10-23compa-71160,
  year={2024},
  doi={10.1093/logcom/exae069},
  title={A comparison of imprecise Bayesianism and Dempster–Shafer theory for automated decisions under ambiguity},
  issn={0955-792X},
  journal={Journal of Logic and Computation},
  author={Radzvilas, Mantas and Peden, William and Tortoli, Daniele and De Pretis, Francesco}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71160">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-08T09:10:29Z</dc:date>
    <dc:contributor>Peden, William</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71160"/>
    <dcterms:issued>2024-10-23</dcterms:issued>
    <dc:contributor>De Pretis, Francesco</dc:contributor>
    <dc:creator>Peden, William</dc:creator>
    <dc:creator>De Pretis, Francesco</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-08T09:10:29Z</dcterms:available>
    <dc:creator>Radzvilas, Mantas</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract>Ambiguity occurs insofar as a reasoner lacks information about the relevant physical probabilities. There are objections to the application of standard Bayesian inductive logic and decision theory in contexts of significant ambiguity. A variety of alternative frameworks for reasoning under ambiguity have been proposed. Two of the most prominent are Imprecise Bayesianism and Dempster–Shafer theory. We compare these inductive logics with respect to the Ambiguity Dilemma, which is a problem that has been raised for Imprecise Bayesianism. We develop an agent-based model comparison that isolates the difference between the two inductive logics in their updating methods. We find that Dempster–Shafer theory does not avoid the Ambiguity Dilemma. We discuss the implications of this result.</dcterms:abstract>
    <dc:contributor>Radzvilas, Mantas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:title>A comparison of imprecise Bayesianism and Dempster–Shafer theory for automated decisions under ambiguity</dcterms:title>
    <dc:creator>Tortoli, Daniele</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Tortoli, Daniele</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen