Publikation:

Global classical solution for one-dimensional nonlinear thermoelastiticity with second sound on the semi-axis

Lade...
Vorschaubild

Dateien

huthesis87.pdf
huthesis87.pdfGröße: 599.74 KBDownloads: 132

Datum

2011

Autor:innen

Hu, Yuxi

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this paper, we will give a global existence theorem in one-dimensional thermoelasticity with second sound in ℝ+. For this purpose, we first give the decay rates of the linearized equations with the help of of the Fourier sine and cosine transformation and the local existence theorem using theorems for quasi-linear symmetric hyeperbolic sytems. Then we establish some estimates in L2, L1 and L norms to get a uniform a apriori estimate. Finally, we use the usual continuation argument to get a global solution.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HU, Yuxi, 2011. Global classical solution for one-dimensional nonlinear thermoelastiticity with second sound on the semi-axis
BibTex
@techreport{Hu2011Globa-14066,
  year={2011},
  series={Konstanzer Schriften in Mathematik},
  title={Global classical solution for one-dimensional nonlinear thermoelastiticity with second sound on the semi-axis},
  number={280},
  author={Hu, Yuxi}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/14066">
    <dc:contributor>Hu, Yuxi</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/14066"/>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/14066/2/huthesis87.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Global classical solution for one-dimensional nonlinear thermoelastiticity with second sound on the semi-axis</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-14T10:09:16Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/14066/2/huthesis87.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-14T10:09:16Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">In this paper, we will give a global existence theorem in one-dimensional thermoelasticity with second sound in ℝ&lt;sup&gt;+&lt;/sup&gt;. For this purpose, we first give the decay rates of the linearized equations with the help of of the Fourier sine and cosine transformation and the local existence theorem using theorems for quasi-linear symmetric hyeperbolic sytems. Then we establish some estimates in L&lt;sup&gt;2&lt;/sup&gt;, L&lt;sup&gt;1&lt;/sup&gt; and L&lt;sup&gt;∞&lt;/sup&gt; norms to get a uniform a apriori estimate. Finally, we use the usual continuation argument to get a global solution.</dcterms:abstract>
    <dc:creator>Hu, Yuxi</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen