Publikation:

Utilizing Mind-Maps for Information Retrieval and User Modelling

Lade...
Vorschaubild

Dateien

Beel_0-283256.pdf
Beel_0-283256.pdfGröße: 1.13 MBDownloads: 640

Datum

2014

Autor:innen

Beel, Joeran
Langer, Stefan
Genzmehr, Marcel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

VANIA DIMITROVA ..., , ed.. User Modeling, Adaptation, and Personalization : 22nd International Conference, UMAP 2014, Aalborg, Denmark, July 7-11, 2014 ; Proceedings. Springer: Cham, 2014, pp. 301-313. Lecture Notes in Computer Science. 8538. ISBN 978-3-319-08785-6. Available under: doi: 10.1007/978-3-319-08786-3_26

Zusammenfassung

Mind-maps have been widely neglected by the information retrieval (IR) community. However, there are an estimated two million active mind-map users, who create 5 million mind-maps every year, of which a total of 300,000 is publicly available. We believe this to be a rich source for information retrieval applications, and present eight ideas on how mind-maps could be utilized by them. For instance, mind-maps could be utilized to generate user models for recommender systems or expert search, or to calculate relatedness of web-pages that are linked in mind-maps. We evaluated the feasibility of the eight ideas, based on estimates of the number of available mind-maps, an analysis of the content of mind-maps, and an evaluation of the users’ acceptance of the ideas. We concluded that user modelling is the most promising application with respect to mind-maps. A user modelling prototype – a recommender system for the users of our mind-mapping software Docear – was implemented, and evaluated. Depending on the applied user modelling approaches, the effectiveness, i.e. click-through rate on recommendations, varied between 0.28% and 6.24%. This indicates that mind-map based user modelling is promising, but not trivial, and that further research is required to increase effectiveness.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

mind-maps; content analysis; user modelling; information retrieval

Konferenz

Proceedings of the 22nd Conference on User Modelling, Adaption, and Personalization (UMAP), 2014, 7. Juli 2014 - 11. Juli 2014, Aalborg
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEEL, Joeran, Stefan LANGER, Marcel GENZMEHR, Bela GIPP, 2014. Utilizing Mind-Maps for Information Retrieval and User Modelling. Proceedings of the 22nd Conference on User Modelling, Adaption, and Personalization (UMAP), 2014. Aalborg, 7. Juli 2014 - 11. Juli 2014. In: VANIA DIMITROVA ..., , ed.. User Modeling, Adaptation, and Personalization : 22nd International Conference, UMAP 2014, Aalborg, Denmark, July 7-11, 2014 ; Proceedings. Springer: Cham, 2014, pp. 301-313. Lecture Notes in Computer Science. 8538. ISBN 978-3-319-08785-6. Available under: doi: 10.1007/978-3-319-08786-3_26
BibTex
@inproceedings{Beel2014Utili-30294,
  year={2014},
  doi={10.1007/978-3-319-08786-3_26},
  title={Utilizing Mind-Maps for Information Retrieval and User Modelling},
  number={8538},
  isbn={978-3-319-08785-6},
  publisher={Cham},
  address={Springer},
  series={Lecture Notes in Computer Science},
  booktitle={User Modeling, Adaptation, and Personalization : 22nd International Conference, UMAP 2014, Aalborg, Denmark, July 7-11, 2014 ; Proceedings},
  pages={301--313},
  editor={Vania Dimitrova ...},
  author={Beel, Joeran and Langer, Stefan and Genzmehr, Marcel and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30294">
    <dcterms:title>Utilizing Mind-Maps for Information Retrieval and User Modelling</dcterms:title>
    <dcterms:abstract xml:lang="eng">Mind-maps have been widely neglected by the information retrieval (IR) community. However, there are an estimated two million active mind-map users, who create 5 million mind-maps every year, of which a total of 300,000 is publicly available. We believe this to be a rich source for information retrieval applications, and present eight ideas on how mind-maps could be utilized by them. For instance, mind-maps could be utilized to generate user models for recommender systems or expert search, or to calculate relatedness of web-pages that are linked in mind-maps. We evaluated the feasibility of the eight ideas, based on estimates of the number of available mind-maps, an analysis of the content of mind-maps, and an evaluation of the users’ acceptance of the ideas. We concluded that user modelling is the most promising application with respect to mind-maps. A user modelling prototype – a recommender system for the users of our mind-mapping software Docear – was implemented, and evaluated. Depending on the applied user modelling approaches, the effectiveness, i.e. click-through rate on recommendations, varied between 0.28% and 6.24%. This indicates that mind-map based user modelling is promising, but not trivial, and that further research is required to increase effectiveness.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30294/1/Beel_0-283256.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Beel, Joeran</dc:creator>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T12:17:21Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30294/1/Beel_0-283256.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T12:17:21Z</dc:date>
    <dc:contributor>Beel, Joeran</dc:contributor>
    <dc:creator>Genzmehr, Marcel</dc:creator>
    <dc:contributor>Genzmehr, Marcel</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:creator>Langer, Stefan</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30294"/>
    <dc:contributor>Langer, Stefan</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen