Publikation:

Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Wang, Yunhai
Chen, Xin
Ge, Tong
Bao, Chen
Sedlmair, Michael
Fu, Chi-Wing
Chen, Baoquan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 820-829. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864912

Zusammenfassung

Appropriate choice of colors significantly aids viewers in understanding the structures in multiclass scatterplots and becomes more important with a growing number of data points and groups. An appropriate color mapping is also an important parameter for the creation of an aesthetically pleasing scatterplot. Currently, users of visualization software routinely rely on color mappings that have been pre-defined by the software. A default color mapping, however, cannot ensure an optimal perceptual separability between groups, and sometimes may even lead to a misinterpretation of the data. In this paper, we present an effective approach for color assignment based on a set of given colors that is designed to optimize the perception of scatterplots. Our approach takes into account the spatial relationships, density, degree of overlap between point clusters, and also the background color. For this purpose, we use a genetic algorithm that is able to efficiently find good color assignments. We implemented an interactive color assignment system with three extensions of the basic method that incorporates top K suggestions, user-defined color subsets, and classes of interest for the optimization. To demonstrate the effectiveness of our assignment technique, we conducted a numerical study and a controlled user study to compare our approach with default color assignments; our findings were verified by two expert studies. The results show that our approach is able to support users in distinguishing cluster numbers faster and more precisely than default assignment methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WANG, Yunhai, Xin CHEN, Tong GE, Chen BAO, Michael SEDLMAIR, Chi-Wing FU, Oliver DEUSSEN, Baoquan CHEN, 2019. Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots. In: IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 820-829. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864912
BibTex
@article{Wang2019-01Optim-43554,
  year={2019},
  doi={10.1109/TVCG.2018.2864912},
  title={Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots},
  number={1},
  volume={25},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={820--829},
  author={Wang, Yunhai and Chen, Xin and Ge, Tong and Bao, Chen and Sedlmair, Michael and Fu, Chi-Wing and Deussen, Oliver and Chen, Baoquan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43554">
    <dc:creator>Ge, Tong</dc:creator>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:creator>Fu, Chi-Wing</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43554"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-17T07:20:46Z</dc:date>
    <dc:contributor>Bao, Chen</dc:contributor>
    <dcterms:title>Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots</dcterms:title>
    <dc:contributor>Chen, Xin</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Chen, Baoquan</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Bao, Chen</dc:creator>
    <dcterms:issued>2019-01</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Ge, Tong</dc:contributor>
    <dc:contributor>Fu, Chi-Wing</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Chen, Xin</dc:creator>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dc:contributor>Chen, Baoquan</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-17T07:20:46Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Appropriate choice of colors significantly aids viewers in understanding the structures in multiclass scatterplots and becomes more important with a growing number of data points and groups. An appropriate color mapping is also an important parameter for the creation of an aesthetically pleasing scatterplot. Currently, users of visualization software routinely rely on color mappings that have been pre-defined by the software. A default color mapping, however, cannot ensure an optimal perceptual separability between groups, and sometimes may even lead to a misinterpretation of the data. In this paper, we present an effective approach for color assignment based on a set of given colors that is designed to optimize the perception of scatterplots. Our approach takes into account the spatial relationships, density, degree of overlap between point clusters, and also the background color. For this purpose, we use a genetic algorithm that is able to efficiently find good color assignments. We implemented an interactive color assignment system with three extensions of the basic method that incorporates top K suggestions, user-defined color subsets, and classes of interest for the optimization. To demonstrate the effectiveness of our assignment technique, we conducted a numerical study and a controlled user study to compare our approach with default color assignments; our findings were verified by two expert studies. The results show that our approach is able to support users in distinguishing cluster numbers faster and more precisely than default assignment methods.</dcterms:abstract>
    <dc:creator>Wang, Yunhai</dc:creator>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dc:contributor>Wang, Yunhai</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen