Publikation: Enabling E-Mobility: Facility Location for Battery Loading Stations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The short cruising range due to the limited battery supply of current Electric Vehicles (EVs) is one of the main obstacles for a complete transition to E-mobility. Until batteries of higher energy storage density have been developed, it is of utmost importance to deliberately plan the locations of new loading stations for best possible coverage. Ideally the network of loading stations should allow driving from anywhere to anywhere (and back) without running out of energy. We show that minimizing the number of necessary loading stations to achieve this goal is NP-hard and even worse, we can rule out polynomial-time constant approximation algorithms. Hence algorithms with better approximation guarantees have to make use of the special structure of road networks (which is not obvious how to do it). On the positive side, we show with instance based lower bounds that our heuristic algorithms achieve provably good solutions on real-world problem instances.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STORANDT, Sabine, Stefan FUNKE, 2013. Enabling E-Mobility: Facility Location for Battery Loading Stations. The Twenty-Seventh AAAI Conference on Artificial Intelligence. Bellevue, WA, USA, 14. Juli 2013 - 18. Juli 2013. In: NPProceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence. Menlo Park, CA, USA: AAAI Publications, 2013, pp. 1341-1347BibTex
@inproceedings{Storandt2013Enabl-46623, year={2013}, title={Enabling E-Mobility: Facility Location for Battery Loading Stations}, url={https://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6239}, publisher={AAAI Publications}, address={Menlo Park, CA, USA}, booktitle={NPProceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence}, pages={1341--1347}, author={Storandt, Sabine and Funke, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46623"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46623"/> <dc:creator>Storandt, Sabine</dc:creator> <dc:contributor>Storandt, Sabine</dc:contributor> <dc:creator>Funke, Stefan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T07:57:29Z</dc:date> <dcterms:issued>2013</dcterms:issued> <dcterms:title>Enabling E-Mobility: Facility Location for Battery Loading Stations</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T07:57:29Z</dcterms:available> <dcterms:abstract xml:lang="eng">The short cruising range due to the limited battery supply of current Electric Vehicles (EVs) is one of the main obstacles for a complete transition to E-mobility. Until batteries of higher energy storage density have been developed, it is of utmost importance to deliberately plan the locations of new loading stations for best possible coverage. Ideally the network of loading stations should allow driving from anywhere to anywhere (and back) without running out of energy. We show that minimizing the number of necessary loading stations to achieve this goal is NP-hard and even worse, we can rule out polynomial-time constant approximation algorithms. Hence algorithms with better approximation guarantees have to make use of the special structure of road networks (which is not obvious how to do it). On the positive side, we show with instance based lower bounds that our heuristic algorithms achieve provably good solutions on real-world problem instances.</dcterms:abstract> <dc:contributor>Funke, Stefan</dc:contributor> </rdf:Description> </rdf:RDF>