Publikation:

Nanoscale Surface Photovoltage Spectroscopy

Lade...
Vorschaubild

Dateien

Yalcinkaya_2-1wo0ibi85e8cx5.PDF
Yalcinkaya_2-1wo0ibi85e8cx5.PDFGröße: 2.38 MBDownloads: 3

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): SPP2196

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advanced Optical Materials. Wiley. 2024, 12(8), 20230131. ISSN 2195-1071. eISSN 2195-1071. Verfügbar unter: doi: 10.1002/adom.202301318

Zusammenfassung

Abstract Understanding electron and ion dynamics is an important task for improving modern energy materials, such as photovoltaic perovskites. These materials usually have delicate nano‐ and microstructures that influence the device parameters. To resolve detailed structure–function relationships on the relevant micro‐ and nanometer length scales, the current macroscopic and microscopic measurement techniques are often not sufficient. Here, nanoscale surface photovoltage spectroscopy (nano‐SPV) and nanoscale ideality factor mapping (nano‐IFM) via time‐resolved Kelvin probe force microscopy are introduced. These methods can map nanoscale variations in charge carrier recombination, ion migration, and defects. To show the potential of nano‐SPV and nano‐IFM, these methods are applied to perovskite samples with different morphologies. The results clearly show an improved uniformity of the SPV and SPV decay distribution within the perovskite films upon passivation and increasing the grain size. Nevertheless, nano‐SPV and nano‐IFM can still detect local variations in the defect density on these optimized samples, guiding the way for further optimization.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

atomic force microscopy, charge carrier dynamics, Ideality factor, Kelvinprobe force microscopy, perovskites, surface photovoltage spectroscopy

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690YALCINKAYA, Yenal, Pascal N. ROHRBECK, Emilia R. SCHÜTZ, Azhar FAKHARUDDIN, Lukas SCHMIDT-MENDE, Stefan A.L. WEBER, 2024. Nanoscale Surface Photovoltage Spectroscopy. In: Advanced Optical Materials. Wiley. 2024, 12(8), 20230131. ISSN 2195-1071. eISSN 2195-1071. Verfügbar unter: doi: 10.1002/adom.202301318
BibTex
@article{Yalcinkaya2024-03Nanos-68090,
  year={2024},
  doi={10.1002/adom.202301318},
  title={Nanoscale Surface Photovoltage Spectroscopy},
  number={8},
  volume={12},
  issn={2195-1071},
  journal={Advanced Optical Materials},
  author={Yalcinkaya, Yenal and Rohrbeck, Pascal N. and Schütz, Emilia R. and Fakharuddin, Azhar and Schmidt-Mende, Lukas and Weber, Stefan A.L.},
  note={Article Number: 20230131}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68090">
    <dc:contributor>Rohrbeck, Pascal N.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:language>eng</dc:language>
    <dc:creator>Weber, Stefan A.L.</dc:creator>
    <dcterms:title>Nanoscale Surface Photovoltage Spectroscopy</dcterms:title>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dc:creator>Schmidt-Mende, Lukas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Yalcinkaya, Yenal</dc:creator>
    <dcterms:issued>2024-03</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-08T10:22:10Z</dcterms:available>
    <dc:creator>Schütz, Emilia R.</dc:creator>
    <dc:contributor>Weber, Stefan A.L.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dc:contributor>Yalcinkaya, Yenal</dc:contributor>
    <dc:contributor>Schütz, Emilia R.</dc:contributor>
    <dc:contributor>Schmidt-Mende, Lukas</dc:contributor>
    <dc:contributor>Fakharuddin, Azhar</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68090/1/Yalcinkaya_2-1wo0ibi85e8cx5.PDF"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract>Abstract Understanding electron and ion dynamics is an important task for improving modern energy materials, such as photovoltaic perovskites. These materials usually have delicate nano‐ and microstructures that influence the device parameters. To resolve detailed structure–function relationships on the relevant micro‐ and nanometer length scales, the current macroscopic and microscopic measurement techniques are often not sufficient. Here, nanoscale surface photovoltage spectroscopy (nano‐SPV) and nanoscale ideality factor mapping (nano‐IFM) via time‐resolved Kelvin probe force microscopy are introduced. These methods can map nanoscale variations in charge carrier recombination, ion migration, and defects. To show the potential of nano‐SPV and nano‐IFM, these methods are applied to perovskite samples with different morphologies. The results clearly show an improved uniformity of the SPV and SPV decay distribution within the perovskite films upon passivation and increasing the grain size. Nevertheless, nano‐SPV and nano‐IFM can still detect local variations in the defect density on these optimized samples, guiding the way for further optimization.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68090"/>
    <dc:creator>Rohrbeck, Pascal N.</dc:creator>
    <dc:creator>Fakharuddin, Azhar</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-08T10:22:10Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68090/1/Yalcinkaya_2-1wo0ibi85e8cx5.PDF"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Nein
Diese Publikation teilen